三階行列式計算
三階行列式的計算方法如下:
三階行列式{(A,B,C),(D,E,F),(G,H,I)},A、B、C、D、E、F、G、H、I都是數字。
1、按斜線計算A*E*I,B*F*G,C*D*H,求和AEI+BFG+CDH
2、再按斜線計算C*E*G,D*B*I,A*H*F,求和CEG+DBI+AHF
3、行列式的值就為(AEI+BFG+CDH)-(CEG+DBI+AHF)
擴展資料:
三階行列式性質
性質1:行列式與它的轉置行列式相等。
性質2:互換行列式的兩行(列),行列式變號。
推論:如果行列式有兩行(列)完全相同,則此行列式為零。
性質3:行列式的某一行(列)中所有的元素都乘以同一數k,等于用數k乘此行列式。
推論:行列式中某一行(列)的所有元素的公因子可以提到行列式符號的外面。
性質4:行列式中如果有兩行(列)元素成比例,則此行列式等于零。
性質5:把行列式的某一列(行)的各元素乘以同一數然后加到另一列(行)對應的元素上去,行列式不變。
三階行列式怎么做呀?
三階行列式計算方法,如下:
這里一共是六項相加減,整理下可以這么記:
a1(b2·c3-b3·c2) - a2(b1·c3-b3·c1) + a3(b1·c2-b2·c1)=
a1(b2·c3-b3·c2) - b1(a2·c3- a3·c2) + c1(a2·b3- a3·b2)
此時可以記住為:
a1*(a1的余子式)-a2*(a2的余子式)+a3*(a3的余子式)=
a1*(a1的余子式)-b1*(b1的余子式)+c1*(c1的余子式)
三階行列式的性質
性質1:行列式與它的轉置行列式相等。
性質2:互換行列式的兩行(列),行列式變號。
推論:如果行列式有兩行(列)完全相同,則此行列式為零。
性質3:行列式的某一行(列)中所有的元素都乘以同一數k,等于用數k乘此行列式。
推論:行列式中某一行(列)的所有元素的公因子可以提到行列式符號的外面。
性質4:行列式中如果有兩行(列)元素成比例,則此行列式等于零。
性質5:把行列式的某一列(行)的各元素乘以同一數然后加到另一列(行)對應的元素上去,行列式不變。
怎樣求三階行列式?
三階行列式可用對角線法則:D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。
|a11 a12 a13|=a11a22a33-a11a23a32+a12a23a31-a12a21a33+a13a32a21-a13a22a31,a21 a22 a23。
a31 a32 a33,=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31。
a1*(a1的余子式):
某個數的余子式是指刪去那個數所在的行和列后剩下的行列式。
行列式的每一項要求:不同行不同列的數字相乘如選了a1則與其相乘的數只能在2,3行2,3列中找,(即在 b2b3c2c3中找)。
而a1(b2·c3-b3·c2) - a2(b1c3-b3·c1) + a3(b1·c2-b2·c1)是用了行列式展開運算:即行列式等于它第一行的每一個數乘以它的余子式,或等于第一列的每一個數乘以它的余子式,然后按照 + - + - + -......的規律給每一項添加符號之后再做求和計算。
如何計算三階行列式的值?
三階行列式的計算方法如下:
三階行列式{(A,B,C),(D,E,F),(G,H,I)},A、B、C、D、E、F、G、H、I都是數字。
1、按斜線計算A*E*I,B*F*G,C*D*H,求和AEI+BFG+CDH
2、再按斜線計算C*E*G,D*B*I,A*H*F,求和CEG+DBI+AHF
3、行列式的值就為(AEI+BFG+CDH)-(CEG+DBI+AHF)
三階行列式性質
性質1:行列式與它的轉置行列式相等。
性質2:互換行列式的兩行(列),行列式變號。
推論:如果行列式有兩行(列)完全相同,則此行列式為零。
性質3:行列式的某一行(列)中所有的元素都乘以同一數k,等于用數k乘此行列式。
推論:行列式中某一行(列)的所有元素的公因子可以提到行列式符號的外面。
性質4:行列式中如果有兩行(列)元素成比例,則此行列式等于零。
性質5:把行列式的某一列(行)的各元素乘以同一數然后加到另一列(行)對應的元素上去,行列式不變。
三階行列式怎么算呀?
三階行列式計算方法,如下:
這里一共是六項相加減,整理下可以這么記:
a1(b2·c3-b3·c2) - a2(b1·c3-b3·c1) + a3(b1·c2-b2·c1)=
a1(b2·c3-b3·c2) - b1(a2·c3- a3·c2) + c1(a2·b3- a3·b2)
此時可以記住為:
a1*(a1的余子式)-a2*(a2的余子式)+a3*(a3的余子式)=
a1*(a1的余子式)-b1*(b1的余子式)+c1*(c1的余子式)
三階行列式的性質
性質1:行列式與它的轉置行列式相等。
性質2:互換行列式的兩行(列),行列式變號。
推論:如果行列式有兩行(列)完全相同,則此行列式為零。
性質3:行列式的某一行(列)中所有的元素都乘以同一數k,等于用數k乘此行列式。
推論:行列式中某一行(列)的所有元素的公因子可以提到行列式符號的外面。
性質4:行列式中如果有兩行(列)元素成比例,則此行列式等于零。
性質5:把行列式的某一列(行)的各元素乘以同一數然后加到另一列(行)對應的元素上去,行列式不變。
怎么算三階行列式?
三階行列式可用對角線法則:
D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。
|a11 a12 a13|=a11a22a33-a11a23a32+a12a23a31-a12a21a33+a13a32a21-a13a22a31,a21 a22 a23。
a31 a32 a33,=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31。
實對稱矩陣的行列式計算方法:
1、降階法
根據行列式的特點,利用行列式性質把某行(列)化成只含一個非零元素,然后按該行(列)展開。展開一次,行列式降低一階,對于階數不高的數字行列式本法有效。
2、利用范德蒙行列式
根據行列式的特點,適當變形(利用行列式的性質——如:提取公因式;互換兩行(列);一行乘以適當的數加到另一行(列)去,把所求行列式化成已知的或簡單的形式。其中范德蒙行列式就是一種。這種變形法是計算行列式最常用的方法。
3、綜合法
計算行列式的方法很多,也比較靈活,總的原則是:充分利用所求行列式的特點,運用行列式性質及常用的方法,有時綜合運用以上方法可以更簡便的求出行列式的值;有時也可用多種方法求出行列式的值。
本文發布于:2023-02-28 19:18:00,感謝您對本站的認可!
本文鏈接:http://www.newhan.cn/zhishi/a/167760837758718.html
版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。
本文word下載地址:三階行列式(三階行列式對角線法則).doc
本文 PDF 下載地址:三階行列式(三階行列式對角線法則).pdf
| 留言與評論(共有 0 條評論) |