正弦的定義是什么?
正弦是在直角三角形中,對邊的長比上斜邊的長的值。
任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值。
正弦sinθ也可以理解為頂角度數為θ的單位等腰三角形與單位等腰直角三角形的面積之比。
sin30°=1╱2
sin45°=√2╱2
sin60°=√3╱2
sin90°=1
sin180°=0
sin0°=0
sin270°=-1
含義
一般的,在直角坐標系中,給定單位圓,對任意角α,使角α的頂點與原點重合,始邊與x軸非負半軸重合,終邊與單位圓交于點P(u,v),那么點P的縱坐標v叫做角α的正弦函數,記作v=sinα。
通常,我們用x表示自變量,即x表示角的大小,用y表示函數值,這樣我們就定義了任意角的三角函數y=sinx,它的定義域為全體實數,值域為[-1,1]。
什么是正弦?什么是余弦
正弦(sine),數學術語,在直角三角形中,任意一銳角∠A的對邊與斜邊的比叫做∠A的正弦,記作sinA(由英語sine一詞簡寫得來),即sinA=∠A的對邊/斜邊。
余弦(余弦函數),三角函數的一種。在Rt△ABC(直角三角形)中,∠C=90°(如圖所示),∠A的余弦是它的鄰邊比三角形的斜邊,即cosA=b/c,也可寫為cosa=AC/AB。余弦函數:f(x)=cosx(x∈R)。
擴展資料
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
什么是正弦,余弦?正弦余弦又是什么?
正弦是sin,余弦是cos.是相對直角三角形來說的,正弦是一個角的對邊比斜邊,余弦是一個角的臨邊比斜邊。
在直角三角形中,任意一銳角∠A的對邊與斜邊的比叫做∠A的正弦,記作sinA(由英語sine一詞簡寫得來),即sinA=∠A的對邊/斜邊。
三角函數的一種。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的鄰邊比三角形的斜邊,即cosA=b/c,也可寫為cosa=AC/AB。余弦函數:f(x)=cosx(x∈R)。
擴展資料:
在RT△ABC中,如果銳角A確定,那么角A的對邊與鄰邊的比便隨之確定,這個比叫做角A 的正切,記作tanA,即tanA=角A 的對邊/角A的鄰邊。
同樣,在RT△ABC中,如果銳角A確定,那么角A的對邊與斜邊的比便隨之確定,這個比叫做角A的正弦,記作sinA,即sinA=角A的對邊/角A的斜邊。
同樣,在RT△ABC中,如果銳角A確定,那么角A的鄰邊與斜邊的比便隨之確定,這個比叫做角A的余弦,記作cosA,即cosA=角A的鄰邊/角A的斜邊。
若記m(c1,c2)為c的兩值為正根的個數,c1為c的表達式中根號前取加號的值,c2為c的表達式中根號前取減號的值:
①若m(c1,c2)=2,則有兩解;
②若m(c1,c2)=1,則有一解;
③若m(c1,c2)=0,則有零解(即無解)。
注意:若c1等于c2且c1或c2大于0,此種情況算到第二種情況,即一解。
參考資料來源:百度百科——余弦
參考資料來源:百度百科——正弦
正弦是什么意思?
正弦函數。最初級的情況是sinA表示直角△ABC中,銳角A的對邊與斜邊的比,就是sinA=BC/AB,因為不同的銳角這比值就不同,所以就構成函數關系。例如sin30度=1/2。
sin_360百科 https://baike.so.com/doc/5373328-5609303.html在直角三角形中,∠A(非直角)的對邊與斜邊的比叫做∠A的正弦,故記作sinA,即sinA=∠A的對邊/∠A的斜邊 古代說法,正弦是股與弦的比例。 古代說的“勾三股,四弦五”中的“弦”,就是直角三角形中的斜邊。 股就是人的大腿,長長的,古人稱直角三角形中長的那個直角邊為“股”;正方的直角三角形,應是大腿站直。
正弦是∠α(非直角)的對邊與斜邊的比值,余弦是∠A(非直角)的鄰邊與斜邊的比值。 勾股弦放到圓里。弦是圓周上兩點連線。最大的弦是直徑。 把直角三角形的弦放在直徑上,股就是長的弦,即正弦,而勾就是短的弦,即余弦。
按現代說法,正弦是直角三角形某個角(非直角)的對邊與斜邊之比,即:對邊/斜邊。
sin正弦什么意思?
正弦(sine),數學術語,在直角三角形中,任意一銳角∠A的對邊與斜邊的比叫做∠A的正弦,記作sinA(由英語sine一詞簡寫得來),即sinA=∠A的對邊/斜邊。
余弦(余弦函數),三角函數的一種。∠A的余弦是它的鄰邊比三角形的斜邊,即cosA=b/c,也可寫為cosa=AC/AB。余弦函數:f(x)=cosx(x∈R)。
正切,在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的對邊c,BC是∠A的對邊a,AC是∠B的對邊b,正切函數就是tanB=b/a,即tanB=AC/BC。
擴展資料:
在平面三角形中,正切定理說明任意兩條邊的和除以第一條邊減第二條邊的差所得的商等于這兩條邊的對角的和的一半的正切除以第一條邊對角減第二條邊對角的差的一半的正切所得的商。
同角三角函數的基本關系式
倒數關系:tanα ·cotα=1、sinα ·cscα=1、cosα ·cα=1;
商的關系: sinα/cosα=tanα=cα/cscα、cosα/sinα=cotα=cscα/cα;
和的關系:sin2α+cos2α=1、1+tan2α=c2α、1+cot2α=csc2α;
平方關系:sin²α+cos²α=1。
參考資料來源:百度百科-正弦
參考資料來源:百度百科-余弦
參考資料來源:百度百科-正切
正弦公式及推導公式
本文發布于:2023-02-28 19:21:00,感謝您對本站的認可!
本文鏈接:http://www.newhan.cn/zhishi/a/167761110360093.html
版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。
本文word下載地址:正弦(正弦定理和余弦定理).doc
本文 PDF 下載地址:正弦(正弦定理和余弦定理).pdf
| 留言與評論(共有 0 條評論) |