因式分解有哪幾種方法?
1、提公因式法
幾個多項式的各項都含有的公共的因式叫做這個多項式各項的公因式。如果一個多項式的各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法。
具體方法:當各項系數都是整數時,公因式的系數應取各項系數的最大公約數;字母取各項的相同的字母,而且各字母的指數取次數最低的;取相同的多項式,多項式的次數取最低的。
如果多項式的第一項是負的,一般要提出“-”號,使括號內的第一項的系數成為正數。提出“-”號時,多項式的各項都要變號。
2、公式法
如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法。
平方差公式:a²-b²=(a+b)(a-b);
完全平方公式:a²±2ab+b²=(a±b)²;
注意:能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數的積的2倍。
3、待定系數法
例如,將ax2+bx+c因式分解,可令ax2+bx+c=0,再解這個方程。如果方程無解,則原式無法因式分解;如果方程有兩個相同的實數根(設為m),則原式可以分解為(x-m)2如果方程有兩個不相等的實數根(分別設為m,n),則原式可以分解為(x-m)(x-n)。
4、十字相乘法
十字分解法的方法簡單來講就是:十字左邊相乘等于二次項系數,右邊相乘等于常數項,交叉相乘再相加等于一次項系數。其實就是運用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆運算來進行因式分解。
擴展資料:
因式分解與解高次方程有密切的關系。對于一元一次方程和一元二次方程,初中已有相對固定和容易的方法。在數學上可以證明,對于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因為公式過于復雜,在非專業領域沒有介紹。
對于分解因式,三次多項式和四次多項式也有固定的分解方法,只是比較復雜。對于五次以上的一般多項式,已經證明不能找到固定的因式分解法,五次以上的一元方程也沒有固定解法。
如果多項式的首項為負,應先提取負號;這里的“負”,指“負號”。如果多項式的第一項是負的,一般要提出負號,使括號內第一項系數是正的。
如果多項式的各項含有公因式,那么先提取這個公因式,再進一步分解因式;多項式的某個整項是公因式時,先提出這個公因式后,括號內切勿漏掉1;提公因式要一次性提干凈,并使每一個括號內的多項式都不能再分解。
如果各項沒有公因式,那么可嘗試運用公式、十字相乘法來分解;如果用上述方法不能分解,再嘗試用分組、拆項、補項法來分解。
什么叫因式分解?分解因式的方法有哪些?
把一個多項式化為幾個最簡整式的乘積的形式,這種變形叫做把這個因式分解(也叫作分解因式)。它是中學數學中最重要的恒等變形之一,它被廣泛地應用于初等數學之中,是我們解決許多數學問題的有力工具。
因式分解方法靈活,技巧性強,學習這些方法與技巧,不僅是掌握因式分解內容所必需的,而且對于培養學生的解題技能,發展學生的思維能力,都有著十分獨特的作用。
定義:把一個多項式化為幾個最簡整式的乘積的形式,這種變形叫做把這個多項式因式分解(也叫作分解因式)。
意義:它是中學數學中最重要的恒等變形之一,它被廣泛地應用于初等數學之中,是我們解決許多數學問題的有力工具。因式分解方法靈活,技巧性強,學習這些方法與技巧,不僅是掌握因式分解內容所必需的。
而且對于培養學生的解題技能,發展學生的思維能力,都有著十分獨特的作用。學習它,既可以復習整式的四則運算,又為學習分式打好基礎;學好它,既可以培養學生的觀察、思維發展性、運算能力,又可以提高學生綜合分析和解決問題的能力。
分解因式與整式乘法互逆。
同時也是解一元二次方程中因式分解法的重要步驟。
擴展資料
各項都含有的公共的因式叫做這個多項式各項的公因式,公因式可以是單項式,也可以是多項式。
如果一個多項式的各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫 做提取公因式分解因式。
具體方法:當各項系數都是整數時,公因式的系數應取各項系數的最大公約數;字母取各項的相同的字母,而且各字母的指數取次數最低的。
當各項的系數有分數時,公因式系數為各分數的最大公約數。如果多項式的第一項是負的,一般要提出“-”號,使括號內的第一項的系數成為正數。提出“-”號時,多項式的各項都要變號。
口訣:找準公因式,一次要提盡;全家都搬走,留1把家守;提負要變號,變形看奇偶。
參考資料:因式分解的百度百科
因式分解12種方法圖解
因式分解12種方法
因式分解12種方法分別是:提公因法、應用公式法、分組分解法、十字相乘法、配方法、添項法、換元法、求根法、圖象法、主元法、利用特殊值法、待定系數法 。方法詳解:
1、提公因法,如果一個多項式的各項都含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式。
2、應用公式法,由于分解因式與整式乘法有著互逆的關系,如果把乘法公式反過來,那么就可以用來把某些多項式分解因式。
3、分組分解法,要把多項式am+an+bm+bn分解因式,可以先把它前兩項分成一組,并提出公因式a,把它后兩項分成一組,并提出公因式b,從而得到a(m+n)+b(m+n),又可以提出公因式m+n,從而得到(a+b)(m+n)。
4、十字相乘法,對于mx +px+q形式的多項式,如果a×b=m, c×d=q且ac+bd=p,則多項式可因式分解為(ax+d)(bx+c)。
5、配方法,對于那些不能利用公式法的多項式,有的可以利用將其配成一個完全平方式,然后再利用平方差公式,就能將其因式分解。
6、拆、添項法,可以把多項式拆成若干部分,再用進行因式分解。
7、換元法,有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數,然后進行因式分解,最后再轉換回來。
8、求根法,令多項式f(x)=0,求出其根為x , x , x ,……x ,則多項式可因式分解為f(x)=(x-x )(x-x )(x-x )……(x-x )。
9、圖象法,令y=f(x),做出函數y=f(x)的圖象,找到函數圖象與X軸的交點x , x , x ,……x ,則多項式可因式分解為f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )。
10、主元法 先選定一個字母為主元,然后把各項按這個字母次數從高到低排列,再進行因式分解。
11、利用特殊值法 將2或10代入x,求出數P,將數P分解質因數,將質因數適當的組合,并將組合后的每一個因數寫成2或10的和與差的形式,將2或10還原成x,即得因式分解式。
12、待定系數法 首先判斷出分解因式的形式,然后設出相應整式的字母系數,求出字母系數,從而把多項式因式分解。
因式分解12種方法2
什么是因式分解法?
因式分解法是什么意思(因式分解法是什么方法)
因式分解法是什么?
本文發布于:2023-02-28 19:49:00,感謝您對本站的認可!
本文鏈接:http://www.newhan.cn/zhishi/a/167763603371474.html
版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。
本文word下載地址:因式分解法(因式分解法的公式).doc
本文 PDF 下載地址:因式分解法(因式分解法的公式).pdf
| 留言與評論(共有 0 條評論) |