高中數學中解析幾何的一般解題方法有哪些?
首先幾何是一門研究圖形的大小,位置和相互關系的學科,而解析幾何是用函數解平面二維幾何的學科。他即要考慮圖形,又要考慮列式,千萬別只會解方程,看到題,就是列方程,圓或圓椎曲線列個二元二次方程,再與直線(二元一次方程)作個方程組,都會有解,但運算量太大。這種情況先考慮圓椎曲線是否有特殊點(固定點),直線是否過定點。再者對于直線與圓椎曲線有兩個交點時,要設交點時,最好設一正一負,這樣代入圓椎曲線時可能相互約去,可減少計算量。
學好幾何有幾個前提,一是代數基礎要根上,最起碼怎樣解方程,如果方程解錯了,不僅會影響本題,肯定是錯了,還會增加對本題答題時間,真是費力不討好,另外,對這題本來是思路清晰,但就是算出矛盾結論時,會很奧惱,影響其它題。
其次對圓椎曲線基本性質要牢記,要學會運用。可總結一類題的共性解題方法。
最后是要學會標準作圖,這樣圖形準,有些題可直接看出解題思路,尢其對選擇或沒有給圖的大題。
高中數學解析幾何怎么做?求技巧!!
高中數學合集百度網盤下載
鏈接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ
?pwd=1234
提取碼:1234
簡介:高中數學優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。
該如何學好高中數學,尤其是解析幾何部分,請學霸們幫幫忙!!!
要學好高中數學的解析幾何,就要會用好的學習方法..
以下是我COPY的一些方法...
希望對你有用...
數學是必考科目之一,故從初一開始就要認真地學習數學。那么,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課后及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
如何學好數學2
高中生要學好數學,須解決好兩個問題:第一是認識問題;第二是方法問題。
有的同學覺得學好教學是為了應付升學考試,因為數學分所占比重大;有的同學覺得學好數學是為將來進一步學習相關專業打好基礎,這些認識都有道理,但不夠全面。實際上學習教學更重要的目的是接受數學思想、數學精神的熏陶,提高自身的思維品質和科學素養,果能如此,將終生受益。曾有一位領導告訴我,他的文科專業出身的秘書為他草擬的工作報告,因為華而不實又缺乏邏輯性,不能令他滿意,因此只得自己執筆起草。可見,即使將來從事文秘工作,也得要有較強的科學思維能力,而學習數學就是最好的思維體操。有些高一的同學覺得自己剛剛初中畢業,離下次畢業還有3年,可以先松一口氣,待到高二、高三時再努力也不遲,甚至還以小學、初中就是這樣“先松后緊”地混過來作為“成功”的經驗。殊不知,第一,現在高中數學的教學安排是用兩年的時間學完三年的課程,高三全年搞總復習,教學進度排得很緊;第二,高中數學最重要、也是最難的內容(如函數、立幾)放在高一年級學,這些內容一旦沒學好,整個高中數學就很難再學好,因此一開始就得抓緊,那怕在潛意識里稍有松懈的念頭,都會削弱學習的毅力,影響學習效果。
至于學習方法的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,我這里主要根據教材的特點提出幾點供大家學習時參考。
l、要重視數學概念的理解。高一數學與初中數學最大的區別是概念多并且較抽象,學起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價的表達方式。例如,為什么函數y=f(x)與y=f-1(x)的圖象關于直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什么當f(x-l)=f(1-x)時,函數y=f(x)的圖象關于y軸對稱,而 y=f(x-l)與 y=f(1-x)的圖象卻關于直線 x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。
2‘學習立體幾何要有較好的空間想象能力,而培養空間想象能力的辦法有二:一是勤畫圖;二是自制模型協助想象,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想象的境界。
3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。
4、在個人鉆研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。
高中數學,解析幾何公式
標準方程: 1.中心在原點,焦點在x軸上的橢圓標準方程: (x^2/a^2)+(y^2/b^2)=1 其中a>b>0,c>0,c^2=a^2-b^2. 2.中心在原點,焦點在y軸上的橢圓標準方程: (x^2/b^2)+(y^2/a^2)=1 其中a>b>0,c>0,c^2=a^2-b^2. 參數方程:X=acosθ Y=bsinθ (θ為參數 )
2)雙曲線
文字語言定義:平面內一個動點到一個定點與一條定直線的距離之比是一個大于1的常數e。定點是雙曲線的焦點,定直線是雙曲線的準線,常數e是雙曲線的離心率。 標準方程: 1.中心在原點,焦點在x軸上的雙曲線標準方程: (x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2. 2.中心在原點,焦點在y軸上的雙曲線標準方程: (y^2/a^2)-(x^2/b^2)=1. 其中a>0,b>0,c^2=a^2+b^2. 參數方程:x=acθ y=btanθ (θ為參數 ) 直角坐標(中心為原點):x^2/a^2 - y^2/b^2 = 1 (開口方向為x軸) y^2/a^2 - x^2/b^2 = 1 (開口方向為y軸)
3)拋物線
參數方程 x=2pt^2 y=2pt (t為參數) t=1/tanθ(tanθ為曲線上點與坐標原點確定直線的斜率)特別地,t可等于0 直角坐標 y=ax^2+bx+c (開口方向為y軸, a<>0 ) x=ay^2+by+c (開口方向為x軸, a<>0 ) 圓錐曲線(二次非圓曲線)的統一極坐標方程為 ρ=ep/(1-e×cosθ) 其中e表示離心率,p為焦點到準線的距離。 焦點到最近的準線的距離等于ex±a 圓錐曲線的焦半徑(焦點在x軸上,F1 F2為左右焦點,P(x,y),長半軸長為a)
焦半徑
圓錐曲線上任意一點到焦點的距離成為焦半徑。 圓錐曲線左右焦點為F1、F2,其上任意一點為P(x,y),則焦半徑為: 橢圓 |PF1|=a+ex |PF2|=a-ex 雙曲線 P在左支,|PF1|=-a-ex |PF2|=a-ex P在右支,|PF1|=a+ex |PF2|=-a+ex P在下支,|PF1|= -a-ey |PF2|=a-ey P在上支,|PF1|= a+ey |PF2|=-a+ey 拋物線 |PF|=x+p/2 圓錐曲線的切線方程 圓錐曲線上一點P(x0,y0)的切線方程以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y 即橢圓:x0x/a^2+y0y/b^2=1;雙曲線:x0x/a^2-y0y/b^2=1;拋物線:y0y=p(x0+x)
焦準距
圓錐曲線的焦點到準線的距離p叫圓錐曲線的焦準距,或焦參數。 橢圓的焦準距:p=(b^2)/c 雙曲線的焦準距:p=(b^2)/c 拋物線的準焦距:p
通徑
圓錐曲線中,過焦點并垂直于軸的弦成為通徑。 橢圓的通徑:(2b^2)/a 雙曲線的通徑:(2b^2)/a 拋物線的通徑:2p
高中數學解析幾何基本不會,怎么辦?
給你個經驗,解析幾何其實不難,它一般都是這幾個問題,切線問題
求值問題(包括求方程,求長度等)
軌跡問題
一般都是這三個
你主要是見少了
見多了就自然而然知道如何去找切口
但這三個問題不是全部,有時候也有特別的,例如2012年湖北高考的解析幾何,要找到有關變量的關系進行計算
有時還需要基本的平面幾何知識,不過不是很難找。一般都是上述的幾個問題,不難的。