• <em id="6vhwh"><rt id="6vhwh"></rt></em>

    <style id="6vhwh"></style>

    <style id="6vhwh"></style>
    1. <style id="6vhwh"></style>
        <sub id="6vhwh"><p id="6vhwh"></p></sub>
        <p id="6vhwh"></p>
          1. 国产亚洲欧洲av综合一区二区三区 ,色爱综合另类图片av,亚洲av免费成人在线,久久热在线视频精品视频,成在人线av无码免费,国产精品一区二区久久毛片,亚洲精品成人片在线观看精品字幕 ,久久亚洲精品成人av秋霞

            數學三大危機(數學三大危機及解決)

            更新時間:2023-03-03 01:48:09 閱讀: 評論:0

            數學三大危機是什么

            數學三大危機簡述:第一,希帕索斯(Hippasu,米太旁登地方人,公元前5世紀)發現了一個腰為1的等腰直角三角形的斜邊(即根號2)永遠無法用最簡整數比(不可公度比)來表示,從而發現了第一個無理數,推翻了畢達哥拉斯的著名理論。相傳當時畢達哥拉斯派的人正在海上,但就因為這一發現而把希帕索斯拋入大海;第二,微積分的合理性遭到嚴重質疑,險些要把整個微積分理論推翻;第三,羅素悖論:S由一切不是自身元素的集合所組成,那S包含S嗎?用通俗一點的話來說,小明有一天說:“我正在撒謊!”問小明到底撒謊還是說實話。羅素悖論的可怕在于,它不像最大序數悖論或最大基數悖論那樣涉及集合高深知識,它很簡單,卻可以輕松摧毀集合理論!

            數學史上的三次危機?

            第一次數學危機,是數學史上的一次重要事件,發生于大約公元前400年左右的古希臘時期,自根號二的發現起,到公元前370年左右,以無理數的定義出現為結束標志。這次危機的出現沖擊了一直以來在西方數學界占據主導地位的畢達哥拉斯學派,同時標志著西方世界關于無理數的研究的開始。

            第二次數學危機,指發生在十七、十八世紀,圍繞微積分誕生初期的基礎定義展開的一場爭論,這場危機最終完善了微積分的定義和與實數相關的理論系統,同時基本解決了第一次數學危機的關于無窮計算的連續性的問題,并且將微積分的應用推向了所有與數學相關的學科中。

            數學史上的第三次危機,是由1897年的突然沖擊而出現的,到現在,從整體來看,還沒有解決到令人滿意的程度。這次危機是由于在康托爾的一般集合理論的邊緣發現悖論造成的。由于集合概念已經滲透到眾多的數學分支,并且實際上集合論成了數學的基礎,因此集合論中悖論的發現自然地引起了對數學的整個基本結構的有效性的懷疑。

            擴展資料:

            一般來講,危機是一種激化的、非解決不可的矛盾。從哲學上來看,矛盾是無處不在的、不可避免的,即便以確定無疑著稱的數學也不例外。

            數學中有大大小小的許多矛盾,比如正與負、加法與減法、微分與積分、有理數與無理數、實數與虛數等等。但是整個數學發展過程中還有許多深刻的矛盾,例如有窮與無窮,連續與離散,乃至存在與構造,邏輯與直觀,具體對象與抽象對象,概念與計算等等。在整個數學發展的歷史上,貫穿著矛盾的斗爭與解決。而在矛盾激化到涉及整個數學的基礎時,就產生數學危機。

            參考資料來源:百度百科 第一次數學危機

            參考資料來源:百度百科 第二次數學危機

            參考資料來源:百度百科 第三次數學危機


            數學史上的三次數學危機分別是什么?

            第一次危機發生在公元前580~568年之間的古希臘,數學家畢達哥拉斯建立了畢達哥拉斯學派。
            第二次數學危機發生在十七世紀。十七世紀微積分誕生后,由于推敲微積分的理論基礎問題,數學界出現混亂局面,即第二次數學危機
            第三次數學危機發生在1902年,羅素悖論的產生震撼了整個數學界,號稱天衣無縫,絕對正確的數學出現了自相矛盾。

            簡答歷史上的三次數學危機產生的根源與解決

            第一次數學危機是無理數的誕生,發現根號2不能寫成兩個整數相除,最終無理數被納入了實數范圍。
            第二次數學危機源于微積分工具的使用,由于定義不嚴格,無窮小量這些概念引起爭論,最終建立了實數理論,極限理論,使得數學分析有了嚴格基礎。
            第三次數學危機是關于集合論,即著名的羅素悖論,集合的定義受到了攻擊.最終通過不同的公理化系統解決,使數理邏輯等學科得到發展。
            歷史上的三次數學危機,給人們帶來了極大的麻煩,危機的產生使人們認識到了現有理論的缺陷,科學中悖論的產生常常預示著人類的認識將進入一個新階段,所以悖論是科學發展的產物,又是科學發展源泉之一.第一次數學危機使人們發現無理數,建立了完整的實數理論,歐氏幾何也應運而生并建立了幾何公理體系;第二次數學危機的出現,直接導致了極限理論、實數理論和集合論三大理論的產生和完善,使微積分建立在穩固且完美的基礎之上;第三次數學危機,使集合論成為一個完整的集合論公理體系(ZFC系統),促進了數學基礎研究及數理邏輯的現代性.

            數學史上的三次危機是什么?

            畢達哥拉斯是公元前五世紀古希臘的著名數學家與哲學家。他曾創立了一個合政治、學術、宗教三位一體的神秘主義派別:畢達哥拉斯學派。由畢達哥拉斯提出的著名命題“萬物皆數”是該學派的哲學基石。而“一切數均可表成整數或整數之比”則是這一學派的數學信仰。然而,具有戲劇性的是由畢達哥拉斯建立的畢達哥拉斯定理卻成了畢達哥拉斯學派數學信仰的“掘墓人”。畢達哥拉斯定理提出后,其學派中的一個成員希帕索斯考慮了一個問題:邊長為1的正方形其對角線長度是多少呢?他發現這一長度既不能用整數,也不能用分數表示,而只能用一個新數來表示。希帕索斯的發現導致了數學史上第一個無理數√2 的誕生。小小√2的出現,卻在當時的數學界掀起了一場巨大風暴。它直接動搖了畢達哥拉斯學派的數學信仰,使畢達哥拉斯學派為之大為恐慌。實際上,這一偉大發現不但是對畢達哥拉斯學派的致命打擊。對于當時所有古希臘人的觀念這都是一個極大的沖擊。這一結論的悖論性表現在它與常識的沖突上:任何量,在任何精確度的范圍內都可以表示成有理數。這不但在希臘當時是人們普遍接受的信仰,就是在今天,測量技術已經高度發展時,這個斷言也毫無例外是正確的!可是為我們的經驗所確信的,完全符合常識的論斷居然被小小的√2的存在而推翻了!這應該是多么違反常識,多么荒謬的事!它簡直把以前所知道的事情根本推翻了。更糟糕的是,面對這一荒謬人們竟然毫無辦法。這就在當時直接導致了人們認識上的危機,從而導致了西方數學史上一場大的風波,史稱“第一次數學危機”。

            第二次數學危機導源于微積分工具的使用。伴隨著人們科學理論與實踐認識的提高,十七世紀幾乎在同一時期,微積分這一銳利無比的數學工具為牛頓、萊布尼茲各自獨立發現。這一工具一問世,就顯示出它的非凡威力。許許多多疑難問題運用這一工具后變得易如翻掌。但是不管是牛頓,還是萊布尼茲所創立的微積分理論都是不嚴格的。兩人的理論都建立在無窮小分析之上,但他們對作為基本概念的無窮小量的理解與運用卻是混亂的。因而,從微積分誕生時就遭到了一些人的反對與攻擊。其中攻擊最猛烈的是英國大主教貝克萊。

            羅素悖論與第三次數學危機

            十九世紀下半葉,康托爾創立了著名的集合論,在集合論剛產生時,曾遭到許多人的猛烈攻擊。但不久這一開創性成果就為廣大數學家所接受了,并且獲得廣泛而高度的贊譽。數學家們發現,從自然數與康托爾集合論出發可建立起整個數學大廈。因而集合論成為現代數學的基石?!耙磺袛祵W成果可建立在集合論基礎上”這一發現使數學家們為之陶醉。1900年,國際數學家大會上,法國著名數學家龐加萊就曾興高采烈地宣稱:“………借助集合論概念,我們可以建造整個數學大廈……今天,我們可以說絕對的嚴格性已經達到了……”

            康托爾

            可是,好景不長。1903年,一個震驚數學界的消息傳出:集合論是有漏洞的!這就是英國數學家羅素提出的著名的羅素悖論。

            羅素構造了一個集合S:S由一切不是自身元素的集合所組成。然后羅素問:S是否屬于S呢?根據排中律,一個元素或者屬于某個集合,或者不屬于某個集合。因此,對于一個給定的集合,問是否屬于它自己是有意義的。但對這個看似合理的問題的回答卻會陷入兩難境地。如果S屬于S,根據S的定義,S就不屬于S;反之,如果S不屬于S,同樣根據定義,S就屬于S。無論如何都是矛盾的。

            羅素

            其實,在羅素之前集合論中就已經發現了悖論。如1897年,布拉利和福爾蒂提出了最大序數悖論。1899年,康托爾自己發現了最大基數悖論。但是,由于這兩個悖論都涉及集合中的許多復雜理論,所以只是在數學界揭起了一點小漣漪,未能引起大的注意。羅素悖論則不同。它非常淺顯易懂,而且所涉及的只是集合論中最基本的東西。所以,羅素悖論一提出就在當時的數學界與邏輯學界內引起了極大震動。如G.弗雷格在收到羅素介紹這一悖論的信后傷心地說:“一個科學家所遇到的最不合心意的事莫過于是在他的工作即將結束時,其基礎崩潰了。羅素先生的一封信正好把我置于這個境地。”戴德金也因此推遲了他的《什么是數的本質和作用》一文的再版。可以說,這一悖論就象在平靜的數學水面上投下了一塊巨石,而它所引起的巨大反響則導致了第三次數學危機。

            危機產生后,數學家紛紛提出自己的解決方案。人們希望能夠通過對康托爾的集合論進行改造,通過對集合定義加以限制來排除悖論,這就需要建立新的原則。“這些原則必須足夠狹窄,以保證排除一切矛盾;另一方面又必須充分廣闊,使康托爾集合論中一切有價值的內容得以保存下來?!?908年,策梅羅在自已這一原則基礎上提出第一個公理化集合論體系,后來經其他數學家改進,稱為ZF系統。這一公理化集合系統很大程度上彌補了康托爾樸素集合論的缺陷。除ZF系統外,集合論的公理系統還有多種,如諾伊曼等人提出的NBG系統等。公理化集合系統的建立,成功排除了集合論中出現的悖論,從而比較圓滿地解決了第三次數學危機。但在另一方面,羅素悖論對數學而言有著更為深刻的影響。它使得數學基礎問題第一次以最迫切的需要的姿態擺到數學家面前,導致了數學家對數學基礎的研究。而這方面的進一步發展又極其深刻地影響了整個數學。如圍繞著數學基礎之爭,形成了現代數學史上著名的三大數學流派,而各派的工作又都促進了數學的大發展等等。

            歷史上的“數學危機”結局是怎樣的?

            第一次數學危機,自根號二的發現起,以無理數的定義出現為結束標志。德國數學家戴德金從連續性的要求出發,用有理數的“分割”來定義無理數,并把實數理論建立在嚴格的科學基礎上,才結束了無理數被認為“無理”的時代,也結束了持續2000多年的數學史上的第一次大危機。

            本文發布于:2023-02-28 21:37:00,感謝您對本站的認可!

            本文鏈接:http://www.newhan.cn/zhishi/a/1677779289114458.html

            版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。

            本文word下載地址:數學三大危機(數學三大危機及解決).doc

            本文 PDF 下載地址:數學三大危機(數學三大危機及解決).pdf

            標簽:三大   危機   數學
            相關文章
            留言與評論(共有 0 條評論)
               
            驗證碼:
            Copyright ?2019-2022 Comsenz Inc.Powered by ? 實用文體寫作網旗下知識大全大全欄目是一個全百科類寶庫! 優秀范文|法律文書|專利查詢|
            主站蜘蛛池模板: 久久中文字幕日韩无码视频| 最新国产精品好看的精品| 亚洲国产精品一区二区三| 亚洲国产精品色一区二区| 国产精品深夜福利免费观看 | 麻豆精品一区二区综合av| 真人免费一级毛片一区二区 | 久久人妻无码一区二区| 国产婷婷精品av在线| 国产成人亚洲综合图区| 久久久精品国产亚洲AV日韩| 成人av天堂网在线观看| 久久96热在精品国产高清| 东京热无码国产精品| 日产精品99久久久久久| 国产一区二区牛影视| 精品一区二区三区不卡| 成在人线av无码免费看网站直播| 亚洲中文字幕无码专区| 毛片一级在线| 人人澡人摸人人添| 亚洲大尺度视频在线播放| 极品尤物被啪到呻吟喷水| 国模精品一区二区三区| 无码中文字幕av免费放| 亚洲欧洲精品日韩av| 亚洲色欲色欲在线大片| 国产网友愉拍精品视频手机| 国产午夜影视大全免费观看 | 亚洲中文字幕在线一区播放| 最新国产精品亚洲| 亚洲av永久无码天堂网| 国产激情精品一区二区三区 | 国产jlzzjlzz视频免费看| 亚洲天堂激情av在线| 伊人色综合九久久天天蜜桃| 久久精品免视看国产成人| 337P日本欧洲亚洲大胆精品555588| 亚洲偷自拍国综合| 在线免费成人亚洲av| 精选国产av精选一区二区三区|