• <em id="6vhwh"><rt id="6vhwh"></rt></em>

    <style id="6vhwh"></style>

    <style id="6vhwh"></style>
    1. <style id="6vhwh"></style>
        <sub id="6vhwh"><p id="6vhwh"></p></sub>
        <p id="6vhwh"></p>
          1. 国产亚洲欧洲av综合一区二区三区 ,色爱综合另类图片av,亚洲av免费成人在线,久久热在线视频精品视频,成在人线av无码免费,国产精品一区二区久久毛片,亚洲精品成人片在线观看精品字幕 ,久久亚洲精品成人av秋霞

            專(zhuān)業(yè)英語(yǔ)翻譯

            更新時(shí)間:2023-12-04 12:11:36 閱讀: 評(píng)論:0

            2023年12月4日發(fā)(作者:2022年春節(jié)祝福語(yǔ))

            -

            專(zhuān)業(yè)英語(yǔ)翻譯

            UNIT1

            Although the u of chemicals dates back to the ancient civilizations, the evolution of what

            we know as the modern chemical industry started much more recently.

            盡管化學(xué)品的使用可以追溯到古代文明時(shí)代,我們所謂的現(xiàn)代化學(xué)工業(yè)的發(fā)展卻是非常近代(才開(kāi)始的)。

            It may be considered to have begun during the Industrial Revolution, about 1800, and

            developed to provide chemicals roe u by other industries.

            可以認(rèn)為它起源于工業(yè)革命其間,大約在1800年,并發(fā)展成為為其它工業(yè)部門(mén)提供化學(xué)原料的產(chǎn)業(yè)。

            Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium

            carbonate for glassmaking.

            比如制肥皂所用的堿,棉布生產(chǎn)所用的漂白粉,玻璃制造業(yè)所用的硅及Na2CO3. 我們會(huì)注意到所有這些都是無(wú)機(jī)物。

            At the start of the twentieth century the emphasis on rearch on the applied aspects of

            chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical

            industry having 75% of the world market in chemicals.

            20世紀(jì)初,德國(guó)花費(fèi)大量資金用于實(shí)用化學(xué)方面的重點(diǎn)研究,到1914年,德國(guó)的化學(xué)工業(yè)在世界化學(xué)產(chǎn)品市場(chǎng)上占有75%的份額。

            UNIT2

            Rearch and development, or R&D as it is commonly referred to, is an activity which is

            carried out by all ctors of manufacturing industry but its extent varies considerably, as we will

            e shortly.

            研究和開(kāi)發(fā),或通常所稱(chēng)R&D是制造業(yè)各個(gè)部門(mén)都要進(jìn)行的一項(xiàng)活動(dòng)。我們馬上可以看到,它的內(nèi)容變化很大。

            Although the distinction between rearch and development is not always clear-cut, and there

            is often considerable overlap, we will attempt to parate them.

            盡管研究和開(kāi)發(fā)的定義總是分得不很清楚,而且有許多重疊的部分,我們還是要試著把它們區(qū)分開(kāi)來(lái)。

            In simple terms rearch can be thought of as the activity which produces new ideas and

            knowledge whereas development is putting tho ideas into practice as new process and products.

            簡(jiǎn)單說(shuō)來(lái),研究是產(chǎn)生新思想和新知識(shí)的活動(dòng),而開(kāi)發(fā)則是把這些思想貫徹到實(shí)踐中得到新工藝和新產(chǎn)品的行為。

            To illustrate this with an example, predicting the structure of a new molecule which would

            have a specific biological activity and synthesizing it could be en as rearch whereas testing it

            and developing it to the point where it could be marketed as a new drug could be described as the

            development part.

            可以用一個(gè)例子來(lái)描述這一點(diǎn),預(yù)測(cè)一個(gè)有特殊生物活性的分子結(jié)構(gòu)并合成它可以看成是研究而測(cè)試它并把它發(fā)展到可以作為一種新藥推向市場(chǎng)這一階段則看作開(kāi)發(fā)部分。

            We can pick out a number of areas of R&D activity in the following paragraphs but if we

            were to start with tho which were to spring to the mind of the academic, rather than the

            industrial, chemist then the would be basic, fundamental (background) or exploratory rearch

            and the synthesis of new compounds. 我們可以在后面的段落里舉出大量的R&D活動(dòng)。但是如果我們舉出的點(diǎn)子來(lái)源于研究院而不是工業(yè)化學(xué)家的頭腦,這就是基礎(chǔ)的或探索性的研究

            Aspects of synthesis could involve either developing new, more specific reagents for

            controlling particular functional group interconversions, i.e. developing synthetic methodology or

            complete synthesis of an entirely new molecule which is biologically active.

            通過(guò)合成可以生產(chǎn)出一些新的、更特殊的試劑以控制特殊的官能團(tuán)轉(zhuǎn)換,即發(fā)展合成方法或完成一些具有生物活性的新分子的合成。

            UNIT3

            The classical role of the chemical engineer is to take the discoveries made by the chemist in

            the laboratory and develop them into money--making, commercial-scale chemical process.

            化學(xué)工程師經(jīng)典的角色是把化學(xué)家在實(shí)驗(yàn)室里的發(fā)現(xiàn)拿來(lái)并發(fā)展成為能賺錢(qián)的、商業(yè)規(guī)模的化學(xué)過(guò)程。

            The design stage is really where the big bucks are spent. One typical chemical process might

            require a capital investment of $50 to $100 million. That’s a lot of bread! And the chemical

            engineer is the one who has to make many of the decisions.

            設(shè)計(jì)階段是大把金錢(qián)花進(jìn)去的時(shí)候。一個(gè)常規(guī)的化工流程可能需要五千萬(wàn)到一億美元的資金投入,有許多的事情要做。化學(xué)工程師是做出很多決定的人之一。

            When you find yourlf in that position, you will be glad that you studied as hard as you did

            (we hope) so that you can bring the best possible tools and minds to bear on the problems.

            當(dāng)你身處其位時(shí),你會(huì)對(duì)自己曾經(jīng)努力學(xué)習(xí)而能運(yùn)用自己的方法和智慧處理這些問(wèn)題感到欣慰。

            Flow sheets are diagrams showing all the equipment schematically, with all streams labeled

            and their conditions specified (flow rate, temperature, pressure, composition, viscosity, density,

            etc.)

            工藝流程圖。是顯示所有設(shè)備的圖紙。要標(biāo)出所有的流線(xiàn)和規(guī)定的條件(流速、溫度、壓力、構(gòu)造、粘度、密度等)。

            Equipment specification Sheets are sheets of detailed information on all the equipment

            preci dimensions, performance criteria, materials of construction, corrosion allowances,

            operating temperatures, and pressures, maximum and minimum flow rates, and the like. The

            “spec sheets” are nt to the equipment manufacturers for price bids and then for building the

            equipment.

            儀器設(shè)備說(shuō)明書(shū)。詳細(xì)說(shuō)明所有設(shè)備準(zhǔn)確的空間尺度、操作參數(shù)、構(gòu)造材料、耐腐蝕性、操作溫度和壓力、最大和最小流速以及諸如此類(lèi)等等。這些規(guī)格說(shuō)明書(shū)應(yīng)交給中標(biāo)的設(shè)備制造廠(chǎng)以進(jìn)行設(shè)備生產(chǎn)

            UNIT6

            Historically the bulk chemical industry was built on chlor-alkali and related process.The

            gment is normally taken to include the production of chlorine gas,caustic soda (sodium

            hydroxide),soda-ash (derivatives of sodium carbonate in various forms ) and,for convenience,lime bad products.

            縱觀歷史,大眾化學(xué)品工業(yè)在氯堿及其相關(guān)過(guò)程之上。該部分通常包括氯氣、苛性蘇打(氫氧化鈉)無(wú)水碳酸鈉(以各種形式存在的碳酸鈉的衍生物),以及以石灰為基礎(chǔ)的產(chǎn)品。

            The peculiar economics of electrolytic process mean that you have to make totally different types of product, and this caus swings in the price of caustic soda which can render soda-ash

            more or less favorable as an alkali.

            電解過(guò)程的特殊經(jīng)濟(jì)性意味著不管對(duì)氯氣和氫氧化鈉這兩種不同類(lèi)型的產(chǎn)品的相對(duì)需求量如何,你只有以固定的比例同時(shí)制備氯氣和氫氧化鈉。這引起了氫氧化鈉的價(jià)格的搖擺不定,從而使得純堿作為一種堿或多或少有利。

            One of the key raw materials is lime. Limestone consists mostly of calcium carbonate

            (CaCO3)laid down over geological time by various marine organisms.

            一種關(guān)鍵(重要)原料是石灰石。石灰石主要是由CaCO3

            組成,高質(zhì)量的石灰石可直接用于下一步反應(yīng)。

            About 40% of the output in iron ore to give a fluid slag which floats to the surface and is

            easily parated from the liquid metal. Smaller, but still significant, amounts are ud in chemical

            manufacture, pollution control and water treatment. The most important chemical derived from

            lime is soda-ash.

            大約40%的石灰工業(yè)的產(chǎn)品用于鋼鐵制造業(yè)。在鋼鐵制造業(yè)中,純堿用來(lái)與鐵礦石中難溶解的硅酸鹽反應(yīng),生成流態(tài)礦渣,礦渣漂浮于表面上,很容易從液態(tài)金屬中分離,叫少量但重要的石灰工業(yè)的產(chǎn)品用于化學(xué)品的制造,污染控制和水處理。從石灰石得到的最重要的化學(xué)茶品是純堿。

            The Solvay process. The process, which was perfected by Ernest Solvay in 1865, is bad on

            the precipitation of NaHCO3 when an ammoniated solution of salt is carbonated with CO2 form a

            coke-fired lime kiln. The NaHCO3 is filtered, dried, and calcined to Na2CO3.

            索爾維工藝,該工藝發(fā)現(xiàn)于1865 年由ES 優(yōu)化:工藝是以當(dāng)含氮的鹽溶液經(jīng)來(lái)自于石灰窯中焦炭燃燒產(chǎn)物CO2

            碳酸鹽反應(yīng)時(shí),NaHCO3

            沉淀析出為基礎(chǔ)。NaHCO3

            經(jīng)過(guò)濾、干燥、煅燒生成CaCO3。

            The filtered ammonium chloride process liquor is made alkaline with slaked lime and the

            ammonia is distilled out for recycle to the front end of the process. The resultant calcium chloride

            is a waster or by-product stream.

            過(guò)濾后NH4Cl溶液和熟石灰反應(yīng)后(溶液體呈堿性)。蒸餾出NH3

            在該過(guò)程中循環(huán)利用,生成物CaCl2

            是廢棄物或副產(chǎn)物。

            The esntial principle is that, by carefully controlling the concentration of the components

            (especially ammonia and salt), sodium bicarbonate can be precipitated from solutions containing

            salt, carbon dioxide and ammonia, The key to making the process work is controlling the strength

            of the solutions and the rates of crystallization.

            該過(guò)程的基本原理為:利用準(zhǔn)確的控制組分(尤其是NH3

            和NaCl)的濃度,NaHCO3

            能夠從含NaCl、CO2

            和NH3

            的溶液里沉淀析出。該過(guò)程的關(guān)鍵是控制溶液的酸堿強(qiáng)度和結(jié)晶的速度.

            UNIT7

            Dinitrogen makes up more than three-quarters of the air we breathe, but it is not readily

            available for further chemical u. Biological transformation of nitrogen into uful chemicals is

            embarrassing for the chemical industry, since all the effort of all the industry’s technologists has

            been unable to find an easy alternative to this.

            雖然N2 占我們呼吸的空氣3/4 以上,但是氯氣不容易用于進(jìn)一步化學(xué)應(yīng)用。對(duì)化學(xué)工業(yè)來(lái)說(shuō),N2 的生成有用化學(xué)品的生物轉(zhuǎn)化反應(yīng)難以實(shí)現(xiàn),因?yàn)樗械墓I(yè)技術(shù)人員的努力(或嘗試)還沒(méi)有找到該過(guò)程的簡(jiǎn)單其他方法。 Leguminous

            plants can take nitrogen from the air and convert it into ammonia and

            ammonium-containing products at atmospheric pressure and ambient temperature; despite a

            hundred years of effort, the chemical industry still needs high temperatures and pressures of

            hundreds of atmospheres to do the same job.

            在常壓和室溫條件下,豆類(lèi)植物能從空氣中吸入N2 將之轉(zhuǎn)化為NH3 以及含NH4-的產(chǎn)物。盡管(化學(xué)工藝師)花了一百年的精力,要實(shí)現(xiàn)上述轉(zhuǎn)化,化學(xué)工業(yè)仍然需要高溫和上百個(gè)大氣壓的壓力。

            Indeed, until the invention of the Haber process, all nitrogen-containing chemicals came from

            mineral sources ultimately derived from biological activity.

            事實(shí)上,直到Haber 過(guò)程的發(fā)明,所有的含N 化學(xué)品都來(lái)自于有生物活性的礦物資源。

            In principle the reaction between hydrogen and nitrogen is easy; it is exothermic and the

            equilibrium lies to the right at low temperatures, Unfortunately, nature has bestowed dinitrogen

            with an inconveniently strong triple bond, enabling the molecule to thumb its no at

            thermodynamics.

            原則上,H2 和N2 間的反應(yīng)很容易進(jìn)行,該反應(yīng)是放熱反應(yīng),低溫時(shí)平衡向右移動(dòng)。所不幸的是,自然界賦予的N2 一個(gè)很強(qiáng)的叁鍵,這使得N2 分子不易受熱力學(xué)因素的影響。

            In scientific terms the molecule is kinetically inert, and rather vere reaction conditions are

            necessary to get reactions to proceed at a respectable rate. A major source of “fixed” (meaning,

            paradoxically, “ufully reactive”) nitrogen in nature is lightning, where the inten heat is

            sufficient to create nitrogen oxides from nitrogen and oxygen.

            用科學(xué)術(shù)語(yǔ)來(lái)說(shuō),該分子是動(dòng)力學(xué)惰性的。因此,要使該反應(yīng)以一定的速度進(jìn)行,需要相當(dāng)苛刻的反應(yīng)條件。實(shí)際上,“固定”(意思相互矛盾,“有用的反應(yīng)活性”)氦的一種主要來(lái)源是閃電過(guò)程,閃電時(shí)生產(chǎn)大量的熱量,把N2 和O2轉(zhuǎn)化為N2O。

            To get

            a respectable yield of ammonia in a chemical plant we need to u a catalyst. What

            Haber discovered-and it won him a Nobel prize was that some iron compounds were acceptable

            catalysts. Even with such catalysts extreme pressures (up to 600 atmospheres in early process)

            and temperatures (perhaps 400C) are necessary.

            在化工廠(chǎng)中要得到可觀的NH3 的轉(zhuǎn)化率,我們有必要使用催化劑。Haber 發(fā)現(xiàn)的催化劑(這使他獲得諾貝爾獎(jiǎng))。是一些價(jià)廉的含鐵的化合物。即使有該催化劑,這反應(yīng)也需要很高壓力(早期高達(dá)600個(gè)大氣壓)和高溫(大約400C)。

            Pressure drives the equilibrium forward, as four molecules of gas are being transformed

            into two. Higher temperatures, however, drive the equilibrium the wrong way, though they do

            make the reaction faster chon conditions must be a compromi that gives an acceptable

            conversion at a reasonable speed.

            因?yàn)樗膫€(gè)氣體分子轉(zhuǎn)化為兩個(gè)氣體分子,所以增加壓力使平衡向右(正方向)移動(dòng)。然而,盡管高溫使反應(yīng)速度加快,但是高溫使平衡向右移動(dòng),因此,所選的條件必須要折中的能以合理的速率得到令人滿(mǎn)意的轉(zhuǎn)化率。

            The preci

            choice will depend on other economic factors and the details of the catalyst.

            Modern plants have tended to operate at lower pressures and higher temperatures (recycling

            unconverted material) than the nearer-ideal early plants, since the capital and energy costs have

            become more significant.

            條件的準(zhǔn)確選擇將取決于其他的經(jīng)濟(jì)因素和催化劑的具體情況。因?yàn)橘Y本和能耗費(fèi)用越發(fā)重要,當(dāng)代的工廠(chǎng)已經(jīng)趨向于比早期工廠(chǎng)在更低的壓力和更高的溫度(循環(huán)使用未轉(zhuǎn)化的物料)下進(jìn)行操作。 Biological fixation also us a catalyst which contains molybdenum (or vanadium) and iron

            embedded in a very large protein, the detailed structure of which eluded chemists until late 1992.

            How it works is still not understood in detail.

            氮的生物固定也使用了一種催化劑,該催化劑鑲在較大的蛋白質(zhì)分子中含有鉬和鐵,其詳細(xì)結(jié)構(gòu)直到1992 年才被化學(xué)家弄清楚,該催化劑的詳細(xì)作用機(jī)理尚未清楚。

            UNIT10

            In a wider n, engineering may be defined as a scientific prentation of the techniques

            and facilities ud in a particular industry. For example, mechanical engineering refers to the

            techniques and facilities employed to make machines.

            廣義來(lái)講,工程學(xué)可以定義為對(duì)某種工業(yè)所用技術(shù)和設(shè)備的科學(xué)表達(dá)。例如,機(jī)械工程學(xué)涉及的是制造機(jī)器的工業(yè)所用技術(shù)和設(shè)備。

            It is predominantly bad on mechanical forces which are ud to change the appearance

            and/or physical properties of the materials being worked, while their chemical properties are left

            unchanged.

            它優(yōu)先討論的是機(jī)械力,這種作用力可以改變所加工對(duì)象的外表或物理性質(zhì)而不改變其化學(xué)性質(zhì)。

            Chemical engineering encompass the chemical processing of raw materials, bad on

            chemical and physico-chemical phenomena of high complexity.

            化學(xué)工程學(xué)包括原材料的化學(xué)過(guò)程,以更為復(fù)雜的化學(xué)和物理化學(xué)現(xiàn)象為基礎(chǔ)。

            Chemical engineering is above all bad on the chemical sciences, such as physical

            chemistry, chemical thermodynamics, and chemical kinetics. In doing so, however, it does not

            simply copy their findings, but adapts them to bulk chemical processing. The principal objectives

            that t chemical engineering apart from chemistry as a pure science, is “to find the most

            economical route of operation and to design commercial equipment and accessories that suit it

            best of all”.

            前述化學(xué)工程學(xué)都是以化學(xué)科學(xué)為基礎(chǔ)的,如物理化學(xué),化學(xué)熱力學(xué)和化學(xué)動(dòng)力學(xué)。然而這樣做的時(shí)候,它并不是僅僅簡(jiǎn)單地照搬結(jié)論,而是要把這些知識(shí)運(yùn)用于大批量生產(chǎn)的化學(xué)加工過(guò)程。把化學(xué)工程學(xué)與純化學(xué)區(qū)分開(kāi)來(lái)的首要目的是“找到最經(jīng)濟(jì)的生產(chǎn)路線(xiàn)并設(shè)計(jì)商業(yè)化的設(shè)備和輔助設(shè)備盡可能地適應(yīng)它。”

            Therefore, chemical engineering is inconceivable without clo ties with economics,

            physics, mathematics, cybernetics, applied mechanics, and other technical sciences.

            因此如果沒(méi)有與經(jīng)濟(jì)學(xué),物理學(xué),數(shù)學(xué),控制論,應(yīng)用機(jī)械以及其它技術(shù)的聯(lián)系就不能想象化學(xué)工程會(huì)是什么樣的。

            In its early days, chemical engineering was largely a descriptive science. Many of the early

            textbooks and manuals on chemical engineering were encyclopedias of the commercial production

            process known at the time.

            早期的化學(xué)工程學(xué)以描述性為主。許多早期的有關(guān)化學(xué)工程的教科書(shū)和手冊(cè)都是那個(gè)時(shí)候已知的商品生產(chǎn)過(guò)程的百科全書(shū)。

            Progress in science and industry has bought with it an impressive increa in the number of

            chemical manufactures. Today, petroleum for example rves as the source material for the

            production of about 80 thousand chemicals.

            科學(xué)和工業(yè)的發(fā)展使化學(xué)品的制造數(shù)量迅速增加。舉例來(lái)說(shuō),今天石油已經(jīng)成為八萬(wàn)多種化學(xué)產(chǎn)品生產(chǎn)的原材料。 As the chemical process industries forged ahead, new data, new relationships and new

            generalizations were added to the subject-matter of chemical engineering. Many branches in their

            own right have parated from the main stream of chemical engineering, such as process and plant

            design, automation, chemical process simulation and modeling, etc.

            隨著化學(xué)加工工業(yè)的發(fā)展,新的數(shù)據(jù),新的關(guān)系和新的綜論不斷添加到化學(xué)工程學(xué)的目錄中。然后又從主干上分出許多的分支,如工藝和工廠(chǎng)設(shè)計(jì),自動(dòng)化,化工工藝模擬和模型,等等。

            UNIT11

            Before committing a great deal of time and effort to the study of a subject, it is reasonable to

            ask the following two questions; what is it? What is it good for? Regarding thermodynamics, the

            cond question is more easily answered, but an answer to the first is esntial to an understanding

            of the subject.

            在投入大量的時(shí)間和精力去研究一個(gè)學(xué)科時(shí),有理由去問(wèn)一下以下兩個(gè)問(wèn)題:該學(xué)科是什么?(研究)它有何用途?關(guān)于熱力學(xué),雖然第二個(gè)問(wèn)題更容易回答,但回答第一個(gè)問(wèn)題有必要對(duì)該學(xué)科較深入的理解。

            Although it is doubtful that many experts or scholars would agree on a simple and preci

            definition of thermodynamics, necessity demands that a definition be attempted. However, this is

            best accomplished after the applications of thermodynamics have been discusd.

            盡管許多專(zhuān)家或?qū)W者贊同熱力學(xué)的簡(jiǎn)單而準(zhǔn)確的定義的觀點(diǎn)(看法)值得懷疑,但是還是有必要確定它的定義。然而,在討論熱力學(xué)的應(yīng)用之后,就可以很容易完成其定義。

            There are two major applications of thermodynamics, both of which are important to

            chemical engineers:

            熱力學(xué)有兩個(gè)主要的應(yīng)用,兩者對(duì)化學(xué)工程師都很重要。

            i)

            The calculation

            of heat and work effects associated with process as well as the

            calculation of the maximum work obtainable from a process or the minimum work required to

            drive a process.

            1)與過(guò)程相聯(lián)系的熱效應(yīng)和功效應(yīng)的計(jì)算,以及從過(guò)程得到的最大功或驅(qū)動(dòng)過(guò)程所需

            的最小功的計(jì)算。

            ii) The establishment of relationships among the variables describing systems at

            equilibrium.

            2)描述處于平衡的系統(tǒng)的各變量之間的關(guān)系的確定。

            The first

            application is suggested by the name thermodynamics, which implies heat in

            motion. Most of the calculations can be made by the direct implementation of the first and

            cond laws. Examples are calculating the work of compressing a gas, performing an energy

            balance on an entire process or a process unit, determining the minimum work of parating a

            mixture of ethanol and water, or evaluating the efficiency of an ammonia synthesis plant.

            第一種應(yīng)用由熱力學(xué)這個(gè)名詞可聯(lián)想到,熱力學(xué)表示運(yùn)動(dòng)中的熱。直接利用第一和第二定律可完成許多(熱效應(yīng)和功效應(yīng)的)計(jì)算。例如:計(jì)算壓縮氣體的功,對(duì)一個(gè)完整過(guò)程或某一過(guò)程單元的進(jìn)行能量衡算,確定分離乙醇和水混合物所需的最小功,或者(evaluate)評(píng)估一個(gè)氨合成工廠(chǎng)的效率。

            The application of thermodynamics to a particular system results in the definition of uful

            properties and the establishment of a network of relationships among the properties and other

            variables such as pressure, temperature, volume, and mol fraction. 熱力學(xué)在特殊體系中的應(yīng)用,引出了一些有用的函數(shù)的定義以及這些函數(shù)和其它變量(如壓強(qiáng)、溫度、體積和摩爾分?jǐn)?shù))關(guān)系網(wǎng)絡(luò)的確定。

            Actually, application 1 would not be possible unless a means existed for evaluating the

            necessary thermodynamic property changes required in implementing the first and cond laws.

            The property changes are calculated from experimentally determined data via the established

            network of relationships.

            實(shí)際上,在運(yùn)用第一、第二定律時(shí),除非用于評(píng)價(jià)必要的熱力學(xué)函數(shù)變化已經(jīng)存在,否則熱力學(xué)的第一種應(yīng)用不可能實(shí)現(xiàn)。通過(guò)已經(jīng)建立的關(guān)系網(wǎng)絡(luò),從實(shí)驗(yàn)確定的數(shù)據(jù)可以計(jì)算函數(shù)變化。

            Additionally, the network of relationships among the variables of a system allows the

            calculation of values of variables which are either unknown or difficult to determine

            experimentally from variables which are either available or easier to measure.

            除此之外,某一體系中變量的關(guān)系網(wǎng)絡(luò),可讓那些未知的或者那些難以從變量(這些變量容易得到或較易測(cè)量)中實(shí)驗(yàn)確定的變量得以計(jì)算。

            For example, the hate of vaporizing a liquid can be calculated from measurements of the

            vapor pressure at veral temperatures and the densities of the liquid and vapor phas at vers

            temperature , and the maximum conversion obtainable in a chemical reaction at any temperature

            can be calculate from calorimetric measurements performed on the individual substances

            participating in the reaction.

            例如,一種液體的汽化熱,可以通過(guò)測(cè)量幾個(gè)溫度的蒸汽壓和幾個(gè)溫度下液相和汽相的密度得以計(jì)算;某一化學(xué)反應(yīng)中任一溫度下的可得的最大轉(zhuǎn)化率,可以通過(guò)參與該反應(yīng)的各物質(zhì)的熱量法測(cè)量加以計(jì)算。

            UNIT12

            Transport phenomena is the collective name given to the systematic and integrated study of

            three classical areas of engineering science: (i) energy or heat transport, (ii) mass transport or

            diffusion, and (iii) momentum transport or fluid dynamics.

            傳遞現(xiàn)象是工程科學(xué)三個(gè)典型領(lǐng)域系統(tǒng)性和綜合性研究的總稱(chēng):能量或熱量傳遞,質(zhì)量傳遞或擴(kuò)散,以及動(dòng)量傳遞或流體力學(xué)。

            Of cour, heat and mass transport occur frequently in fluids, and for this reason some

            engineering educators prefer to includes the process in their treatment of fluid mechanics .

            當(dāng)然,熱量和質(zhì)量傳遞在流體中經(jīng)常發(fā)生,正因如此,一些工程教育家喜歡把這些過(guò)程包含在流體力學(xué)的范疇內(nèi)。

            Since transport phenomena also includes heat conduction and diffusion in solids, however,

            the subject is actually of wider scope than fluid mechanics.

            由于傳遞現(xiàn)象也包括固體中的熱傳導(dǎo)和擴(kuò)散,因此,傳遞現(xiàn)象實(shí)際上比流體力學(xué)的領(lǐng)域更廣。

            It is also distinguished from fluid mechanics in that the study of transport phenomena make

            u of the similarities between the equations ud to describe the process of heat, mass, and

            momentum transport.

            傳遞現(xiàn)象的研究充分利用描述傳熱,傳質(zhì),動(dòng)量傳遞過(guò)程的方程間的相似性,這也區(qū)別于流體力學(xué)。

            The analogies, as they are usually called, can often be related to similarities in the physical

            mechanisms whereby the transport takes place. 這些類(lèi)推(通常被這么叫)常常可以與傳遞現(xiàn)象發(fā)生的物理機(jī)制間的相似性關(guān)聯(lián)起來(lái)。

            As a conquence, an understanding of one transport process can readily lead to an

            understanding of other process.

            因此,一個(gè)傳遞過(guò)程的理解能夠容易促使其他過(guò)程的理解。

            Moreover, if the differential equations and boundary conditions are the same, a solution need

            be obtained for only one of the process since by changing the nomenclature that solution can be

            ud to obtain the solution for any other transport process.

            而且,如果微分方程和邊界條件是一樣的,只需獲得一個(gè)傳遞過(guò)程的解決方案即可,因?yàn)橥ㄟ^(guò)改變名稱(chēng)就可以用來(lái)獲得其他任何傳遞過(guò)程的解決方案。

            It must be emphasized, however, that while there are similarities between the transport

            process, there are also important differences, especially between the transport of momentum (a

            vector) and that of heat or mass (scalars ).

            必須強(qiáng)調(diào),雖然有相似之處,也有傳遞過(guò)程之間的差異,尤其重要的是運(yùn)輸動(dòng)量(矢量)和熱或質(zhì)量(標(biāo)量).

            Nevertheless, a systematic study of the similarities between the transport process makes it

            easier to identify and understand the differences between them.

            然而,系統(tǒng)地研究了相似性傳遞過(guò)程之間的相似性,使它更容易識(shí)別和理解它們之間的差別。

            In order to demonstrate the analogies between the transport process, we will study each of

            the process in parallel-instead of studying momentum transport first , then energy transport , and

            finally mass transport.

            為了找出傳遞過(guò)程間的相似性,我們將同時(shí)研究每一種傳遞過(guò)程——取代先研究動(dòng)量傳遞,再傳熱,最后傳質(zhì)的方法。

            Besides promoting understanding, there is another pedagogical reason for not using the rial

            approach that is ud in other textbooks: of the three process, the concepts and equations

            involved in the study of momentum transport are the most difficult for the beginner to understand

            and to u.

            除了促進(jìn)理解之外,對(duì)于不使用在其他教科書(shū)里用到的順序法還有另一個(gè)教學(xué)的原因:在三個(gè)過(guò)程中,包含在動(dòng)量傳遞研究中的概念和方程對(duì)初學(xué)者來(lái)說(shuō)是最難以理解并使用。

            Becau it is impossible to cover heat and mass transport thoroughly without prior

            knowledge of momentum transport, one is forced under the rial approach to take up the most

            difficult subject (momentum transport) first.

            因?yàn)樵诓痪哂杏嘘P(guān)動(dòng)量傳遞的知識(shí)前提下一個(gè)人不可能完全理解傳熱和傳質(zhì),在順序法的情況下他就被迫先研究最難的課程即動(dòng)量傳遞。

            On the other hand, if the subjects are studied in parallel, momentum transport becomes more

            understandable by reference to the familiar subject of heat transport.

            另一方面,如果課程同時(shí)被研究,通過(guò)參照有關(guān)傳熱的熟悉課程動(dòng)量傳遞就變得更好理解。

            Furthermore, the parallel treatment makes it possible to study the simpler the physical

            process that are occurring rather than the mathematical procedures and reprentations.

            而且,平行研究法可以先研究較為簡(jiǎn)單的概念,再深入到較難和較抽象的概念。我們可以先強(qiáng)調(diào)所發(fā)生的物理過(guò)程而不是數(shù)學(xué)性步驟和描述。

            For example ,we will study one-dimensional transport phenomena first becau equations

            instead of partial requiring vector notation and we can often u ordinary differential equations instead of partial differential equations ,which are harder to solve .

            例如,我們將先研究一維傳遞現(xiàn)象,因?yàn)樗诓灰笫噶繕?biāo)注下就可以被解決,并且我們常常可以使用普通的微分方程代替難以解決的偏微分方程。

            This procedure is also justified by the fact that many of the practical problems of transport

            phenomena can be solved by one-dimensional models.

            加上傳遞現(xiàn)象的許多實(shí)際問(wèn)題可以通過(guò)一維模型解決的這樣一個(gè)事實(shí),這種處理做法也是合理的。

            -

            專(zhuān)業(yè)英語(yǔ)翻譯

            本文發(fā)布于:2023-12-04 12:11:36,感謝您對(duì)本站的認(rèn)可!

            本文鏈接:http://www.newhan.cn/zhishi/a/1701663096235259.html

            版權(quán)聲明:本站內(nèi)容均來(lái)自互聯(lián)網(wǎng),僅供演示用,請(qǐng)勿用于商業(yè)和其他非法用途。如果侵犯了您的權(quán)益請(qǐng)與我們聯(lián)系,我們將在24小時(shí)內(nèi)刪除。

            本文word下載地址:專(zhuān)業(yè)英語(yǔ)翻譯.doc

            本文 PDF 下載地址:專(zhuān)業(yè)英語(yǔ)翻譯.pdf

            留言與評(píng)論(共有 0 條評(píng)論)
               
            驗(yàn)證碼:
            Copyright ?2019-2022 Comsenz Inc.Powered by ? 實(shí)用文體寫(xiě)作網(wǎng)旗下知識(shí)大全大全欄目是一個(gè)全百科類(lèi)寶庫(kù)! 優(yōu)秀范文|法律文書(shū)|專(zhuān)利查詢(xún)|
            主站蜘蛛池模板: 国产精品亚洲第一区在线| 在线观看潮喷失禁大喷水无码| 精品一区二区三区蜜桃久| 久久99热只有视精品6国产| 九九热久久这里全是精品| 东方四虎av在线观看| 94人妻少妇偷人精品| 好男人社区影视在线WWW| 强奷乱码中文字幕| 国产a级黄色一区二区| 国产精品偷伦在线观看| 亚洲熟妇中文字幕五十路| 国产亚洲精品AA片在线播放天| 久久国产福利播放| 国产精品亚洲精品日韩已满十八小| 亚洲中文字幕国产av| 亚洲国产一区二区A毛片| 国产拗精品一区二区三区| 亚洲精品麻豆一二三区| 国产18禁黄网站禁片免费视频| 亚洲另类午夜中文字幕| 国产人成亚洲第一网站在线播放| 日韩精品卡一卡二卡三卡四| 欧美性猛交xxxx乱大交丰满| 视频二区国产精品职场同事 | 中文 在线 日韩 亚洲 欧美| 亚洲AV成人无码久久精品| 国产欧美日韩免费看AⅤ视频| 丁香五月亚洲综合在线国内自拍| 久久亚洲av成人无码软件| 国产激情一区二区三区在线| 国产成人AV在线免播放观看新 | 91国在线啪精品一区| 亚洲一区二区三区激情在线| 久久99精品中文字幕在| 精品国产av最大网站| 亚洲欧美成人a∨观看| 天天躁夜夜躁狠狠综合| 亚洲一区二区中文av| 中文字幕av一区二区| 五月丁香六月综合缴清无码|