2023年12月14日發(作者:朋友數)

Perimeter
Perimeter is the distance around a two-dimensional shape.
Example: the perimeter of this rectangle is 7+3+7+3 = 20
Example: the perimeter of
regular pentagon is 3+3+3+3+3 = 5×3 = 15
The perimeter of a circle is called the circumference:
Circumference = 2π × radius
精選文檔
this
Perimeter Formulas
Triangle
Perimeter = a + b + c
Square
Perimeter = 4 × a
a = length of side
Rectangle
Perimeter = 2 × (w + h)
w = width
h = height
Quadrilateral
Perimeter = a + b + c + d
Circle
Circumference = 2πr
r = radius
Sector
Perimeter = r(θ+2)
r = radius
θ = angle in radians
精選文檔
精選文檔 Perimeter of an Ellip
On the Ellip page we looked at the definition and some of the simple
properties of the ellip, but here we look at how to more accurately calculate
its perimeter.
Perimeter
Rather strangely, the perimeter of an ellip is very difficult to calculate!
There are many formulas, here are some interesting ones. (Also e Calculation
Tool below.)
First Measure Your Ellip!
a and b are measured from the center, so they are like "radius" measures.
Approximation 1
This approximation is within about 5% of the true value, so long as a is not more
than 3 times longer than b (in other words, the ellip is not too "squashed"):
精選文檔 Approximation 2
The famous Indian mathematician Ramanujan came up with this better
approximation:
Approximation 3
Ramanujan also came up with this one. First we calculate "h":
Then u it here:
Infinite Series 1
This is an exact formula, but it needs an "infinite ries" of calculations to
be exact, so in practice we still only get an approximation.
First we calculate
e (the "eccentricity", not Euler's number "e"):
Then u this "infinite sum" formula:
Which may look complicated, but expands like this:
精選文檔 精選文檔 The terms continue on infinitely, and unfortunately we must calculate a lot of terms
to get a reasonably clo answer.
Infinite Series 2
But my favorite exact formula (becau it gives a very clo answer after only
a few terms) is as follows:
First we calculate "h":
Then u this "infinite sum" formula:
(Note: the is the Binomial Coefficient with
half-integer factorials ... wow!)
It may look a bit scary, but it expands to this ries of calculations:
The more terms we calculate, the more accurate it becomes (the next term is
4525h/16384, which is getting quite small, and the next is 49h/65536, then
6441h/1048576)
Comparing精選文檔 Just for fun, I calculate the perimeter using the three approximation formulas,
and the two exact formulas (but only the first four terms including the "1", so
it is still just an approximation) for the following values of a and b:
Circle
a: 10
b: 10
Approx 1: 62.832
Approx 2: 62.832
Approx 3: 62.832
Series 1: 62.832
Series 2: 62.832
Exact*:
20π
* Exact:
?
10
5
49.673
48.442
48.442
48.876
48.442
10
3
46.385
43.857
43.859
45.174
43.859
10
1
44.65
40.606
40.639
43.204
40.623
Lines
10
0
44.429
39.834
39.984
42.951
39.884
40
When a=b, the ellip is a circle, and the perimeter is 2πa (
in our example).
?
When b=0 (the shape is really two lines back and forth) the perimeter
is 4a (40 in our example).
They all get the perimeter of the circle correct, but only Approx 2 and
3 and Series 2 get clo to the value of 40 for the extreme ca of b=0.
精選文檔
Ellip Perimeter Calculations Tool
This tool does the calculations from above, but with more terms for the Series.
精選文檔 周長
周長是圍繞一個二維形狀的距離。
例如:此矩形的周長是7 + 3 + 7 + 3 = 20
例如:此常規的周邊五邊形是3 + 3 + 3 + 3 + 3 = 5×3 = 15
一個的周緣圓圈被稱為圓周:
圓周= 2個π ×半徑
精選文檔 周邊公式
三角形
平方
周長= A + B + C
周長= 4×一個
一個=邊的長度
矩形
周長= 2×(W + H)
W =寬度
H =高度
四邊形
周長= A + B + C + D
圓
周長= 2
π - [R
R =半徑
扇區
周長= R(θ+ 2)
R =半徑
θ=在角度弧度
橢圓
周長= 很辛苦!
精選文檔 橢圓的周長
在橢圓頁面我們看到了定義和一些橢圓的簡單性質的,但在這里我們就來看看如何更準確地計算出它的周長。
周長
而是奇怪的,橢圓的周長是很難計算!
有許多公式,這里有一些有趣的。(另請參閱計算工具下文)。
先測量你的橢圓!
一和b被測量從中心,因此它們像“半徑”的措施。
精選文檔
逼近1
這種近似是內真值的約5%,所以只要一個長于不超過3倍b(換言之,橢圓是不是太“擠壓”):
逼近2
著名的印度數學家拉馬努金想出了這個更好的近似:
逼近3
拉馬努金也來到了這一個。首先,我們計算出“H”:
然后在這里使用它:
精選文檔 無窮級數1
這是一個 精確的公式,但它需要計算的“無窮級數”是準確的,因此在實踐中,我們仍然只得到一個近似。
首先,我們計算? (下稱“ 偏心 ”,不是 歐拉數“E”):
然后用這個“無限之和”的公式:
這可能看起來復雜,但擴展是這樣的:
該條款繼續無限,不幸的是,我們必須計算很多方面的得到一個相當接近的答案。
無窮級數2
但我最喜歡的精確公式(因為它僅提供了一些術語后非常密切的答案)如下:
首先,我們計算出“H”:
然后用這個“無限之和”的公式:
(注:是 二項式系數 與半整數階乘 ...哇?。┚x文檔
它可能看起來有點嚇人,但它擴展到這一系列的計算:
越術語我們計算,則成為更準確的(下一個項是25 ?
4 /16384這是越來越相當小的,并且下一個是49 ?
5/65536然后441 ?
6 /1048576)
對比
只是為了好玩,我計算出使用三個近似公式周長,兩個精確的公式(但只有前四項,包括“1”,所以它仍然只是一個近似值)為下列值一和b:
圈
A: 10
b: 10
約1: 62.832
約2: 62.832
約3: 62.832
系列一: 62.832
系列二: 62.832
精確*:
20個π
*精確:
?
?
10
五
49.673
48.442
48.442
48.876
48.442
10
3
46.385
43.857
43.859
45.174
43.859
10
1
44.65
40.606
40.639
43.204
40.623
行
10
0
44.429
39.834
39.984
42.951
39.884
40
當A = B時,橢圓為圓形,且所述周邊是2
π一個(62.832 ...在我們的例子)。
當B = 0(形狀實際上是兩個線來回)周長為4A(40在我們的例子)。
他們都得到了圓的周長是正確的,但只有約2,3和系列2獲得接近40 B = 0的極端情況下的價值。精選文檔
橢圓外周計算工具
此工具會計算從以上,但對于更多的系列條款。
(注:可編輯下載,若有不當之處,請指正,謝謝!)
精選文檔
本文發布于:2023-12-14 04:06:59,感謝您對本站的認可!
本文鏈接:http://www.newhan.cn/zhishi/a/1702498019120983.html
版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。
本文word下載地址:英語版數學公式Perimeter周長公式.doc
本文 PDF 下載地址:英語版數學公式Perimeter周長公式.pdf
| 留言與評論(共有 0 條評論) |