• <em id="6vhwh"><rt id="6vhwh"></rt></em>

    <style id="6vhwh"></style>

    <style id="6vhwh"></style>
    1. <style id="6vhwh"></style>
        <sub id="6vhwh"><p id="6vhwh"></p></sub>
        <p id="6vhwh"></p>
          1. 国产亚洲欧洲av综合一区二区三区 ,色爱综合另类图片av,亚洲av免费成人在线,久久热在线视频精品视频,成在人线av无码免费,国产精品一区二区久久毛片,亚洲精品成人片在线观看精品字幕 ,久久亚洲精品成人av秋霞

             首頁 > 專欄

            square, cube & etc

            更新時間:2023-11-12 04:26:52 閱讀: 評論:0

            天祖-燒不壞的手帕

            square, cube & etc
            2023年11月12日發(作者:保護環境的句子)

            PerfectSquares,Cubes,FourthPowersandMore

            Manyproblemsinnumbertheoryinvolveexpressionswithperfectsquares,perfectcubes

            orperfectfourthpowers.Thereareproblemsthatrequireusto?ndintegersolutionsto

            equationswithunknownexponents.BelowIwilllistveralcommontypesofproblems

            andstrategiestotacklethem.Ofcour,thelistisnotexhaustive.

            1.Findingintegersolutionstoanequationinvolvingperfectsquares,cubesor

            fourthpowers.Manyoftheproblemscanbetackledbyconsideringthepos-

            sibleresidues,moduloasuitablenumber.Forperfectsquares,tryingconsidering

            modulo4,8,16,3,5,7,11or13.Forperfectcubes,itmaybeufultotake

            modulo7,9or,ocassionally,modulo13.Forperfectfourthpowers,youmight

            wishtoconsidermodulo5or16.Ofcour,thearejustsuggestions,andit

            reallydependsontheproblem.

            Forequationsthatinvolveonlyperfectsquaresintwovariables,itmaybeufulto

            considertheequationasaquadraticinonevariable,anduthefactthatdiscrim-

            inantisnon-negativeforasolutiontoexist,orthatthediscriminantisaperfect

            square(inorderforthesolutionstobeaninteger).Thisapproach,however,has

            limitedusandmaysometimesleadtoadeadend.

            Anotherapproachwouldbetotrytofactorithegivenexpressiontotrytoderive

            ufuldivisibilitypropertiesorinequalitiesthatwillallowyoutoreducethescope

            ofconsiderationtojustafewcas.Factorisationisalwaysoneapproachthatyou

            shouldkeepinmind,asitmaysometimesyieldsurprisingresults.

            Alternatively,toshowthatacertainequationhasnointegersolutions,wecanalso

            uFermat’smethodofin?nitedescent.Toshowthatanequationinvolvingper-

            fectsquareshasin?nitelymanysolutions,wemaywanttoshowthattheequation

            canbereducedto?ndingthesolutionstopythagoreantriples,forwhichtherewill

            bein?nitelymanysolutions.Thetechniqueswillnotbecoveredindetailinthis

            lesson.

            2.Provethatacertainexpressionisalwaysaperfectsquare(orperfectcube).

            Themoststraightforwardwaytodothisistoshowthatitcanalwaysbefactorid

            intoaperfectsquare(orcube)!Thefollowingresultmaybeuful:Ifabis

            aperfectsquareandgcd(a,b)=1,thenaandbmustalsobeperfectsquares.

            Anotherstandardapproachistoprovebycontradiction.Suppotheexpression

            isnotaperfectsquare,andshowthatitleadstoacontradiction.

            Ifthequestionisofthetype“provethat(someexpression)isalwaysaperfect

            squareforallvaluesofn”,thenyoumaywanttoconsiderusingmathematical

            induction.

            3.Provethatacertainexpressionisneveraperfectsquare.Simpleproblems

            ofthissortcanbedonebyconsideringtheresidueoftheexpressionmoduloa

            suitablenumber,sayn.Ifitisnotaquadraticresidueofn,thenitcannotbea

            perfectsquare.

            Anothercommontechniqueinvolvesboundingbetweenconcutivesquares(or

            concutivecubes).Ifn<x<(n+1)foranintegern,thenxcannotbeaperfect

            22

            square.

            Alternatively,ifweareabletoshowthataprimeporanoddpoweroftheprime,

            p,dividestheexpressionexactly,thentheexpressioncannotbeaperfect

            2k+1

            square.

            PreparedbyHoJunWei

            HwaChongMathOlympiadProgramme(Open)

            1

            4.Aprobleminvolvingtwogivenexpressionsthatarebothperfectsquares.If

            youaregivenexpressionAandexpressionBandyouaretoldthattheyareboth

            perfectsquares,thenyoumightwishtoask,whatconditionsmustholdforboth

            ofthemtobeperfectsquares?IfweletA=mandB=n,itmaybeufulto

            22

            considerA?B=(m+n)(m?n).Itmayalsohelptoconsiderifmornmustbe

            oddoreven(bytakingAandBmodulo4,forinstance).Consideringresidues

            oftheexpressionsmoduloasuitablenumbermaysometimesalsoleadyoutoa

            solution(oracontradiction).

            Iftheproblemwantsyouto“?ndallintegersxsuchthatAandBarebothperfect

            squares”,whereAandBareexpressionsinvolvingx,youmightwantto?nda

            boundforx.Forinstance,againwesuppoA=mandB=n.Thenyoumay

            22

            wanttoshowthatifxexceedsacertainnumber,thenm<n<(m+1),thusA

            222

            andBcannotbothbeperfectsquares,acontradiction.

            AnotherapproachtothiskindofproblemistotrytoobtainaPell’sequationfrom

            thegivenexpressions.However,thatisbeyondthescopeofourlesson.

            5.EquationswithunknownexponentsIftheequationhastermswithanunknown

            exponente.g.7,thenwemaywishtoconsiderresiduesmoduloasuitablenumber

            x

            to‘eliminate’theterm.Forinstance,wecanumod7togetridof7.Alterna-

            x

            tively,mod3andmod8arealsoufulsince71(mod3)and7±1(mod

            xx

            8).Thismightleadustosomethinguful.Alternatively,iftherearetwoormore

            termswithunknownexponents,suchas3+4=5,thenconsideringmod3and

            xyz

            mod4respectively,youwillobtainxandzareeven.Theequationcanthenbe

            factoridasadifferenceofsquares.

            ResiduesofSquares,CubesandFourthPowers

            Thefollowingresultsforperfectsquaresareeasytoverify:

            ?x0,1(mod4).

            2

            Moreprecily,x0(mod4)?xiseven,andx1(mod4)?xisodd.

            22

            ?x0,1,4(mod8).

            2

            Inparticular,notethatx1(mod8)?xisodd.

            2

            ?x0,1,4,9(mod16)

            2

            ?x0,1(mod3)

            2

            ?x0,1,4(mod5)

            2

            ?x0,1,2,4(mod7)

            2

            Herearesomeufulpropertiesofperfectcubes:

            ?x0,±1(mod7)

            3

            ?x0,±1(mod9)

            3

            Finally,forperfectfourthpowers:

            ?x0,1(mod5)

            4

            ?x0,1(mod16)

            4

            PreparedbyHoJunWei

            HwaChongMathOlympiadProgramme(Open)

            2

            Example1.Findallpairsofprimenumbers(p,q)suchthat

            (RussiaMO)

            p?q=(p+q).

            352

            Example2.Letdbeanypositiveintegerthatisnot2,5or13.Provethatatleastoneof

            thenumbers2d?1,5d?1,13d?1isnotaperfectsquare.

            Example3.Findallnon-negativeintegersolutionstotheequation3?y=1.

            x3

            Example4.Provethattherearenointegersxandysuchthat

            (Putnam1954)

            x+3xy?2y=122.

            22

            PreparedbyHoJunWei

            HwaChongMathOlympiadProgramme(Open)

            3

            ClassroomProblems

            1.Letnbeanaturalnumbersuchthat2n+1and3n+1arebothperfectsquares.

            Provethat5n+3iscomposite.

            2.If2n+1and3n+1arebothperfectsquares,provethatnmustbedivisibleby40.

            3.Determineallprimespsuchthat5+12isaperfectsquare.

            pp

            4.Letnbeaninteger.Provethatif228n+1+2isaninteger,thenitisaperfect

            2

            square.

            5.Findallnaturalnumbersnsuchthat2+2+2isaperfectsquare.

            811n

            6.Provethatthesystemofequations

            x+6y=z

            222

            6x+y=t

            222

            hasnonon-trivialsolutions.

            7.Findallintegersxandysuchthatx+3yandy+3xarebothperfectsquares.

            22

            8.Findallintegersxandysuchthatx+y,x+2yand2x+yareallperfectsquares.

            4442009

            +x+...+x=2009.9.Determineallintegersolutionstotheequationx

            128

            10.Findallnon-negativeintegers(x,y)satisfying(xy?7)=x+y.

            222

            11.Provethattheequationy=x?4hasnointegersolutions.

            25

            12.Findallpairsofintegers(x,y)satisfyingtheequation

            (SMO(S)2004/Round2)

            (x+y)=1+16y.

            222

            13.Showthattheequation2?1=zhasnointegersolutionsifx,m>1.

            xm

            14.Dothereexistintegersxandysuchthat19=x+y?Justify

            (SMO(O)1998/B3)

            1934

            youranswer.

            15.Findallpairsofnonnegativeintegers(x,y)satisfying

            (NTST2007)

            (14y)+y=2007.

            xx+y

            16.Whatisthesmallestpositiveintegernsuchthatthereexists

            (IMOshortlist2002)

            3332002

            +x+...+x=2002?integersx,x,...,xsatisfyingx

            12n

            12

            n

            17.Determineallpairs(x,y)ofintegerssuchthat

            (IMO2006)

            1+2+2=y.

            x2x+12

            PreparedbyHoJunWei

            HwaChongMathOlympiadProgramme(Open)

            4

            春色書會-媽媽的朋友圈

            square, cube & etc

            本文發布于:2023-11-12 04:26:51,感謝您對本站的認可!

            本文鏈接:http://www.newhan.cn/zhishi/a/1699734411213202.html

            版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。

            本文word下載地址:square, cube & etc.doc

            本文 PDF 下載地址:square, cube & etc.pdf

            下一篇:返回列表
            標簽:fourth
            留言與評論(共有 0 條評論)
               
            驗證碼:
            推薦文章
            排行榜
            Copyright ?2019-2022 Comsenz Inc.Powered by ? 實用文體寫作網旗下知識大全大全欄目是一個全百科類寶庫! 優秀范文|法律文書|專利查詢|
            主站蜘蛛池模板: 日本视频一区二区三区1| 17岁日本免费bd完整版观看| 亚洲欧美牲交| 爱如潮水在线观看视频| 亚洲熟女少妇乱色一区二区| 欧美午夜理伦三级在线观看| 四房播播在线电影| 午夜av高清在线观看| 日韩中文字幕免费在线观看| 日本不卡的一区二区三区| 五月av综合av国产av| 精品视频一区二区福利午夜| 色成人亚洲| 国产成人啪精品午夜网站| 人妻丰满熟AV无码区HD| 夜夜添无码试看一区二区三区| 无码A级毛片免费视频下载| 无码无遮挡刺激喷水视频| 人妻少妇精品视频专区| 自拍日韩亚洲一区在线| 亚洲精品宾馆在线精品酒店| 粗大猛烈进出高潮视频大全| 亚洲av一本二本三本| 久久亚洲精品中文字幕无男同| 久久热这里只有精品99| 女同在线观看亚洲国产精品| 欧美xxxx做受欧美.88| 亚洲VA成无码人在线观看天堂| 国产精品亚洲аv无码播放| 日本免费一区二区三区高清视频| 一区一区三区产品乱码| 日韩精品亚洲精品第一页| 国产午夜亚洲精品理论片不卡| 国产福利姬喷水福利在线观看| 变态另类视频一区二区三区| 亚洲爆乳WWW无码专区| 久久国语对白| 色综合久久久久久久久久| 老司机午夜福利视频| 97一期涩涩97片久久久久久久| 国产最新精品系列第三页|