• <em id="6vhwh"><rt id="6vhwh"></rt></em>

    <style id="6vhwh"></style>

    <style id="6vhwh"></style>
    1. <style id="6vhwh"></style>
        <sub id="6vhwh"><p id="6vhwh"></p></sub>
        <p id="6vhwh"></p>
          1. 国产亚洲欧洲av综合一区二区三区 ,色爱综合另类图片av,亚洲av免费成人在线,久久热在线视频精品视频,成在人线av无码免费,国产精品一区二区久久毛片,亚洲精品成人片在线观看精品字幕 ,久久亚洲精品成人av秋霞

            建筑聲學(研究建筑中聲學環(huán)境問題的科學)

            更新時間:2025-12-15 22:01:51 閱讀: 評論:0

            建筑聲學(研究建筑中聲學環(huán)境問題的科學)

            建筑聲學 (研究建筑中聲學環(huán)境問題的科學) 次瀏覽 | 2022.05.22 14:10:04 更新 來源 :互聯網 精選百科 本文由作者推薦 建筑聲學研究建筑中聲學環(huán)境問題的科學

            建筑聲學是研究建筑中聲學環(huán)境問題的科學。它主要研究室內音質和建筑環(huán)境的噪聲控制。建筑聲學測量包括噪聲與振動測量,圍護構造隔聲測量,重要材料與構造的吸聲量測量以及廳堂音質參量的測量等。

            中文名

            建筑聲學

            簡介

            建筑環(huán)境中聲音傳播聲音評價控制

            學科

            是建筑物理的組成部分

            詞性

            名詞

            歷史起源

            古代羅馬在建筑理論方面也取得了很大的成就,公元前1世紀維特魯威的《建筑十書》是世界上第一部建筑學專著。書中記述了古希臘劇場中的音響調節(jié)方法,如利用共鳴缸和反射面以增加演出的音量等。當時也曾使用吸收低頻聲的共振器,用以改善劇場的聲音效果。

            15~17世紀,歐洲修建的一些劇院,大多有環(huán)形包廂和排列至接近頂棚的臺階式座位,同時由于聽眾和衣著對聲能的吸收,以及建筑物內部繁復的凹凸裝飾對聲音的散射作用,使混響時間適中,聲場分布也比較均勻。劇場或其他建筑物的這種設計,當初可能只求解決視線問題,但無意中卻取得了較好的聽聞效果。

            16世紀,中國建成著名的北京天壇皇穹宇,建有直徑65米的回音壁,可使微弱的聲音沿壁傳播一二百米。在皇穹宇的臺階前,還有可以聽到幾次回聲的三音石。

            18~19世紀,自然科學的發(fā)展推動了理論聲學的發(fā)展。到19世紀末,古典理論聲學發(fā)展到最高峰。20世紀初,美國賽賓提出了著名的混響理論,使建筑聲學進入力學范疇。從20年代開始,由于電子管的出現和放大器的應用,使非常微小的聲學量的測量得以實現,這就為現代建筑聲學的進一步發(fā)展開辟了道路。

            基本任務

            研究室內聲波傳輸的物理條件和聲學處理方法,以保證室內具有良好聽聞條件;研究控制建筑物內部和外部一定空間內的噪聲干擾和危害。

            研究內容

            在中世紀,歐洲教堂采用大的內部空間和吸聲系數低的墻面,以產生長混響聲,造成神秘的宗教氣氛。

            建筑聲學的基本任務是研究室內聲波傳輸的物理條件和聲學處理方法。因此,現代建筑聲學可分為室內聲學和建筑環(huán)境噪聲控制兩個研究領域。

            室內聲學

            當室內幾何尺寸比聲波波長大得多時,可用幾何聲學方法研究早期反射聲分布,以加強直達聲,提高聲場的均勻性,避免音質缺陷。統(tǒng)計聲學方法是從能量的角度研究在連續(xù)聲源激發(fā)下聲能密度的增長、穩(wěn)定和衰減過程(即混響過程),并給混響時間以確切的定義,使主觀評價標準和聲學客觀量結合起來,為室內聲學設計提供科學依據。

            當室內幾何尺寸與聲波波長可比時,易出現共振現象,可用波動聲學方法研究室內聲的簡正振動方式和產生條件,以提高小空間內聲場的均勻性和頻譜特性。室內聲學設計內容包括體型和容積的選擇,最佳混響時間及其頻率特性的選擇和確定,吸聲材料的組合布置和設計適當的反射面以合理地組織近次反射聲等。

            聲學設計要考慮到兩個方面。一方面要加強聲音傳播途徑中有效的聲反射,使聲能在建筑空間內均勻分布和擴散,如在廳堂音質設計中應保證各處觀眾席都有適當的響度。

            另一方面要采用各種吸聲材料和吸聲結構,以控制混響時間和規(guī)定的頻率特性,防止回聲和聲能集中等現象。設計階段要進行聲學模型試驗,預測所采取的聲學措施的效果。

            處理室內音質一方面要了解室內空間體型、所選用的材料對聲場的影響。

            另一方面要考慮室內聲場聲學參數與主觀聽聞效果的關系,即音質的主觀評價。可以說,確定室內音質的好壞,最終還在于聽眾的主觀感受。

            由于聽眾的個人感受和鑒賞力的不同,在主觀評價方面的非一致性是這門學科的特點之一;因此,建筑聲學測量作為研究、探索聲學參數與聽眾主觀感覺的相關性和室內聲信號主觀感覺與室內音質標準相互關系的手段,也是室內聲學的一個重要內容。

            在大型廳堂建筑中,往往采用電聲設備以增強自然聲和提高直達聲的均勻程度,還可以在電路中采用人工延遲、人工混響等措施以提高音質效果。室內擴聲是大型廳堂音質設計必不可少的一個方面,因此,現代擴聲技術已成為室內聲學的一個組成部分。

            建筑環(huán)境噪聲控制

            即使有良好的室內音質設計,如果受到噪聲的嚴重干擾,也將難以獲得良好的室內聽聞條件。為了保證建筑物的使用功能,保證人們正常生活和工作條件,也必須減弱噪聲的影響。

            因此,控制建筑環(huán)境噪聲,保證建筑物內部達到一定的安靜標準,是建筑聲學的另一個重要方面。噪聲干擾,除與噪聲強度有關外,還與噪聲的頻譜、持續(xù)時間、重復出現次數以及人的聽覺特性、心理、生理等因素有關。控制噪聲就是按照實際需要和可能,將噪聲控制在某一適當范圍內。這一范圍所容許的最高噪聲標準稱為容許噪聲級即噪聲容許標準。

            對于不同用途的建筑物,有不同建筑噪聲容許標準:如對工業(yè)建筑主要是為保護人體健康而制定的衛(wèi)生標準;而對學習和生活環(huán)境則要保證達到一定的安靜標準。在噪聲控制中,首先要降低噪聲源的聲輻射強度,其次是控制噪聲的傳播,再次是采取個人防護措施。在城市規(guī)劃和建筑布局上要有合理的安排。

            一般按照各類建筑對安靜程度的要求,劃分區(qū)域并布置道路網,使要求安靜的建筑物,如住宅、文教區(qū)遠離喧鬧的工廠區(qū)或交通干線,避免交通流量大的街道和高速公路穿過住宅區(qū),這是控制城市噪聲的基本措施。在各分區(qū)內各單體建筑物中,同樣需要從控制噪聲的角度,對有不同安靜程度要求的建筑群和各個房間分別進行合理的安排和布局(見建筑物隔聲)。

            噪聲按傳播途徑可分為兩種:一是由空氣傳播的噪聲,即空氣聲;一是由建筑結構傳播的機械振動所輻射的噪聲,即固體聲。空氣聲因傳播過程的衰減和設置隔墻而大大減弱;固體聲由于建筑材料對聲能的衰減作用很小,可傳播得較遠,通常采用分離式構件或彈性聯接等技術措施來減弱其傳播。

            建筑物空氣聲隔聲的能力取決于墻或間壁(隔斷)的隔聲量。基本定律是質量定律,即墻或間壁的隔聲量與它的面密度的對數成正比。現代建筑由于廣泛采用輕質材料和輕型結構,減弱了對空氣聲隔聲的能力,因此又發(fā)展出雙層墻體結構和多層復合墻板,以滿足隔聲的要求。在建筑物中實現固體聲隔聲,相對地說要困難些。

            采用一般的隔振方法,如采用不連續(xù)結構,施工比較復雜,對于要求有高度整體性的現代建筑尤其是這樣。人在樓板上走動或移動物件時產生撞擊聲,直接對樓下房間造成噪聲干擾。可用標準打擊器撞擊樓板,在樓下測定聲壓級值。聲壓級值越大,表示樓板隔絕撞擊聲的性能越差。控制樓板撞擊聲的主要方法是在樓板面層上或地面板與承重樓板之間設置彈性層,特別是在樓板上鋪設彈性面層,是隔絕撞擊聲的簡便有效的措施。

            在工業(yè)建筑物中,隔聲間或隔聲罩已成為廣泛采用的降低設備噪聲的手段。建筑物的通風空調設備會產生空氣動力噪聲。在氣流通道上設置消聲器是防止空氣噪聲的措施。工程上采用的消聲器,根據消聲原理大致可分為阻性、抗性或阻抗復合等類型。許多國家的消聲器已發(fā)展成為商品化的消聲器系列。(見通風空調系統(tǒng)的噪聲控制)在機械設備下面設置隔振器,以減弱振動,是建筑設備隔振的主要措施。,隔振器已由逐個設計發(fā)展成為定型產品。

            法規(guī)規(guī)范廳堂建筑聲學設計的標準及設計方法

            廳堂建筑空間都比較大,所以在設計上尤其是保證其內部聲學設計合理到位,吸音材料以及其他的各種聲學材料不可缺少,所以合理的設計及材料設備的正確使用才能確保其音質效果,只有了解廳堂上的聲學要求和設計方法才能保障有效的音質設計。

            一、建筑聲學設計的要點

            一般而言,建筑聲學設計的要點主要包括噪聲控制和音質設計兩大部分。

            (一)噪聲控制

            通常音樂廳、劇場等廳堂都要求很低的室內背景噪聲,因此,這些廳堂的選址很重要,應盡可能遠離戶外的噪聲與振動源。另外,還要進行場地環(huán)境噪聲與振動調查、測量與仿真預測,目的是為進行廳堂建筑圍護結構的隔聲設計提供依據。保證廳堂建成后能達到預定的室內噪聲標準。此外,建筑聲學設計的另一個重要任務就是進行室內音質設計。

            (二)音質設計

            音質設計通常包括下述工作內容:

            1.確定廳堂體型及體量。

            2.確定音質設計指標及其優(yōu)選值。根據廳堂的使用功能選擇混響時間、明晰度、強度指數、側向能量因子、雙耳互相關系數等音質評價指標,并確定各指標的優(yōu)選值,是音質設計的重要任務。

            3.對樂池、樂臺、包廂、樓座及廳堂各界面進行聲學設計。

            4.計算廳堂音質參量。當廳堂的平、剖面及樓座、包廂、樂池、樂臺等設計方案擬定以后,就可開始計算廳堂音質參量。

            5.進行聲學構造設計。廳堂音質除了受前述建筑因素影響之外,還與室內裝修材料與構造密切相關。聲學裝修構造設計通常包括各界面材料的選擇和繪制構造設計圖,需詳細規(guī)定材料的面密度、表觀密度、厚度、穿孔率、孔徑、孔距、背后空氣層厚度以及龍骨的間距等技術參數。

            6.聲場計算機仿真。對廳堂建筑進行仔細的聲場分析和音質參量計算,有賴于聲場三維計算機仿真。

            7.縮尺模型試驗。對于重要的廳堂,除了計算機仿真外,通常還須建立一定縮尺比的廳堂模型,進行縮尺模型聲學試驗。

            8.可聽化主觀評價。可聽化技術是通過仿真計算。或者通過模型試驗測量獲得雙耳脈沖響應,將之與在消聲室中錄制的音樂或語言"干信號"卷積,輸出已加入廳堂影響的聲音信號,供受試者預先聆聽建成后的廳堂音質效果。這是近年發(fā)展起來的建筑聲學領域一項高新技術。

            9.建筑聲學測量。建筑聲學測量包括噪聲與振動測量,圍護構造隔聲測量,重要材料與構造的吸聲量測量以及廳堂音質參量的測量等。

            10.對電聲系統(tǒng)設計提供咨詢意見。對于需要安裝電聲系統(tǒng)的廳堂,建筑聲學專家尚需與音響工程師配合,對電聲系統(tǒng)的設備選型、設計與安裝提供咨詢意見。

            11.組織主觀評價。對于重要廳堂,在工程落成后,組織專門的演出和主觀評價,來檢驗建成后廳堂的音質效果,是建筑聲學設計最后一個重要環(huán)節(jié)。

            二、聲學設計的手段

            準確地預測房間的音質效果一直是建筑聲學研究者追求的理想。廳堂音質模型測定是建筑聲學設計的重要手段。隨著軟件技術的發(fā)展,使用計算機進行聲場的模擬研究成為現實。近年來,使用基于有限元理論的方法模擬聲音的高階波動特性,在低頻模擬上獲得了一些進展。

            廳堂中短延時反射聲的分布,是決定音質的重要因素。在縮尺模型中,用電火花作為脈沖聲源測得的短延時反射聲分布,與實際大廳的短延時反射聲分布有良好的對應,對在設計階段確定廳堂的大小、體型等有重要參考意義。混響時間是公認的一個可定量的音質參數,通過模型試驗可以預測所要興建廳堂的混響時間。聲場不均勻度也是一個重要的音質參數。

            模型試驗的測量系統(tǒng)、測量方法和結果的表達與實際廳堂相同,但需要根據廳堂模型的縮尺比s,在混響時間測量和聲場不均勻度測量時對測量頻率作相應改變。不同頻率的聲波,在空氣介質中傳播,特別是高頻聲波,它的由空氣吸收引起的衰減在不同溫、濕度條件下差別很大,對混響時間測量結果,需采取對空氣吸收的影響作相應的修正,且有足夠的精度。

            對于短延時反射聲分布測量,廳堂音質模型的縮尺比s一般采用1/5或1/10,也有采用1/20的,但因受試驗設備和頻率過高的限制,精度受到一定影響。對混響時間的測量,縮尺比s為1/20時只能對應實際廳堂1000Hz或2000Hz以下的頻率。推薦縮尺比s不小于1/10,對混響時間和聲場不均勻度的測量可擴展至實際廳堂中的4000Hz。短延時反射聲分布測量的精度也較高。

            模型的內表面形狀,有些起伏尺寸比較小,對聲波的反射和擴散沒有多大影響,在制作模型時可適當簡化。但必須保留等于或大于實際廳堂中聲波為2000Hz的波長的起伏,不能省略。因為這些部分會對聲場的不均勻度有較大影響。要使廳堂音質模型的內表面各個部分,包括觀眾席的吸聲系數在所測量的頻率范圍內與相對應的實際廳堂內表面各部分及觀眾席的吸聲系數完全相符,實際上有很大難度,因此允許有±10%的誤差。

            為了避免在模型中的背景噪聲過高導至動態(tài)范圍達不到要求而影響精度,廳堂音質模型的外殼必須有足夠的隔聲量。舞臺空間大小、形狀及吸聲狀況,對觀眾廳的短延時反射聲分布、混響時間及聲壓級分布有很大影響。在模型試驗時,這部分宜包括在內。舞臺空間部分的吸聲狀況也應進行相應的模擬。

            短延時反射聲分布測量所用的聲源信號為電容器放電時產生的脈沖聲,適于用做模型試驗中的脈沖聲源信號。聲源中心位置規(guī)定為一般演出區(qū)的中心,高度相當于人口的高度。聲場不均勻度測量的聲源位置與高度,與混響時間測量相同。短延時反射聲分布測量常用的方法是將接收到的直達聲和反射聲信號經過放大,以時間為橫軸在示波器上顯示,即脈沖響應聲圖譜(回聲圖)。

            接收用傳聲器,可以用電容傳聲器或靈敏度比較高的球形壓電晶體傳聲器。傳聲器口徑不宜過大,防止傳聲器的圓柱體型在接收位置對聲場形成影響。在測量時要求記錄模型內空氣的溫度和相對濕度,是為了修正由于高頻聲在模型內過量的空氣吸收所造成的低于實際廳堂混響時間的偏差。[1]

            參考資料

            本文發(fā)布于:2023-06-06 17:05:30,感謝您對本站的認可!

            本文鏈接:http://www.newhan.cn/zhishi/a/92/216378.html

            版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業(yè)和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。

            本文word下載地址:建筑聲學(研究建筑中聲學環(huán)境問題的科學).doc

            本文 PDF 下載地址:建筑聲學(研究建筑中聲學環(huán)境問題的科學).pdf

            相關文章
            留言與評論(共有 0 條評論)
               
            驗證碼:
            Copyright ?2019-2022 Comsenz Inc.Powered by ? 實用文體寫作網旗下知識大全大全欄目是一個全百科類寶庫! 優(yōu)秀范文|法律文書|專利查詢|
            主站蜘蛛池模板: 亚洲精品tv久久久久久久久久| 亚洲成人av在线高清| 亚洲精品一区二区美女| 2020年最新国产精品正在播放| 99热精品国产三级在线观看| 国产男女猛烈无遮挡免费视频| 久久久一本精品99久久精品88 | 久久午夜私人影院| 精品国产欧美一区二区五十路| 亚洲国产精品综合久久网各| 精品国产中文字幕av| 久久婷婷成人综合色综合| 人妻另类 专区 欧美 制服| 九九电影网午夜理论片| 国产精品色内内在线播放| 亚洲嫩模喷白浆在线观看| 国产91麻豆精品成人区| av天堂亚洲天堂亚洲天堂| 亚洲午夜伦费影视在线观看| 狠狠躁夜夜躁无码中文字幕| 国产乱人伦偷精品视频下| 精品黑人一区二区三区| 亚洲av日韩av综合在线观看| 少妇搡bbbb搡| 国产国产午夜福利视频| 国产在线无码精品无码| 日韩精品一卡二卡三卡在线| 大陆一级毛片免费播放| 中年国产丰满熟女乱子正在播放 | 国产不卡一区二区在线| 欧美韩国精品另类综合| 天堂中文8资源在线8| 欧洲熟妇色xxxxx| 精品一区二区成人码动漫| 麻花传媒剧在线mv免费观看网址| 亚洲精品国产精品乱码不| 无码成人一区二区三区| 乱码中文字幕| 亚洲AV无码专区亚洲AV紧身裤 | 日本国产一区二区三区在线观看| 亚洲七七久久桃花影院|