
華中科技大學(xué)
碩士學(xué)位論文
納米復(fù)合軟骨組織工程三維支架的的制備及其評價
姓名:***
申請學(xué)位級別:碩士
專業(yè):生物醫(yī)學(xué)工程
指導(dǎo)教師:***
20061102
華中科技大學(xué)碩士學(xué)位論文
摘要
導(dǎo)言:納米羥基磷灰石(nano-HA)比普通磷灰石(HA)有更好的生物相容性性,近年來研究表明,na
no-HA晶粒的尺寸和形態(tài)與天然骨組織中的HA晶體十分近似,具有更好的降解性能、細胞粘附生長能力和骨誘導(dǎo)能力。本實驗以nano-HA 和PDLLA(M=19w)為原料,制備多孔納米復(fù)合支架材料并對其進行評價。并在此支架材料基礎(chǔ)上,結(jié)合三維虛擬數(shù)字人技術(shù)、計算機輔助設(shè)計(CAD)、溶劑澆鑄/粒子瀝濾技術(shù)及激光燒結(jié)快速成形(RP)技術(shù),進一步構(gòu)建三維組織工程支架,探討新的組織工程三維支架制備方法。
方法:采用溶劑澆鑄/粒子瀝濾技術(shù)制備出六種組織工程多孔支架材料,分別是D,L型聚乳酸(PDLLA)、微米級羥基磷灰石(micro-HA)/D,L型聚乳酸(PDLLA)以及四種不同比例(羥基磷灰石與聚乳酸的質(zhì)量比為1:9, 1:4, 2:3, 1:1)的納米羥基
磷灰石/PDLLA復(fù)合多孔支架材料;將軟骨細胞種植于上述支架上。在SEM電鏡下
觀察支架的結(jié)構(gòu)形貌,采用MTT方法觀察細胞在多孔支架材料上的生長增殖情況,體外培養(yǎng)一周后對六組材料做SEM電鏡測試。使用三維虛擬數(shù)字人的數(shù)據(jù)重建三維人體軟骨組織模型,運用兩種方法制備組織工程三維支架:利用選擇性激光燒結(jié)(SLS)快速成形技術(shù)制得硅膠模具,然后再用傳統(tǒng)方法澆鑄成形;設(shè)計合理的支架孔結(jié)構(gòu),再由SLS技術(shù)直接成形。
結(jié)果顯示:羥基磷灰石納米晶粒均勻分布在PDLLA基質(zhì)中,多孔支架中大孔與小孔共存、且互相連通,復(fù)合支架的孔隙率可達90%;六種組織工程支架材料中,
以含HA(50wt%)的nano-HA/PDLLA復(fù)合支架對軟骨細胞的黏附能力和增殖能力
最好。RP技術(shù)可以精確快速便捷的構(gòu)建出所設(shè)計的三維組織工程支架,相比傳統(tǒng)方法制備的支架其孔隙率及孔徑大小的控制有待提高。
結(jié)論:該工作表明,nano-HA/PDLLA復(fù)合多孔支架材料以及快速成形技術(shù)對于組織工程方法修復(fù)軟骨缺損具有重要應(yīng)用前景。
關(guān)鍵詞:軟骨組織工程,復(fù)合支架材料,生物相容性,三維支架構(gòu)建,快速成形技
術(shù)
華中科技大學(xué)碩士學(xué)位論文
ABSTRACT
Introduction: Comparing with hydroxyapatite (HA), nano-hydroxyapatite has received much more attention due to its excellent biocompatibility. Recent rearch suggested that the composition, size and morphology of nano-HA rembled natural apatite crystals in bone minerals. There is much increa in protein adsorption and osteoblast adhesion and osteoconductivity on the nano-ceramic
materials compared to micro-ceramic materials. In this study, Porous scaffolds which were made of high molecular poly (D, L-lactide) (PDLLA) / hydroxyapatite nanocrystals (nano-HA) were fabricated through solvent-casting and particulate-leaching technique. The morphologies, mechanical properties, biodegradability and biocompatibility of the scaffolds were investigated. Then, 3D dummy human data, CAD and RP technique were combined to construct 3D tissue engineering scaffold. New method to fabricate 3D tissue engineering scaffold was arched. Materials and Methods: Six groups of scaffold were fabricated by using a solvent casting / particulate leaching technique, with PDLLA, micro-HA/PDLLA, and nano-HA/ PDLLA (nano-HA: PDLLA weight ratio 1:9, 1:4, 2:3, 1:1). The pha and morphology of the scaffolds were investigated by using SEM. Cells proliferation was evaluated quantitatively by MTT assay. The interaction between scaffolds and cells were obrved by HR-SEM. Results and Discussion: The results showed that nano-HA nanocrystals formed homogeneous dispersion in the PDLLA matrix. The porosity of scaffolds was up to 90%, and macropores and micropores coexisted and interconnected throughout the scaffolds. The tensile modulus for nanocomposites increas with nano-HA loading. The good mechanical properties for nano-HA composites may be due to the homogeneous dispersion of HA nanocrystals in the PDLLA matrix as well as the good interfacial adhesion. Cells grew well after cultured in the scaffold for five days. The morphology of the cells in the last group (nano-HA: PDLLA (w/w) =1:1) was better than oth
ers. 3D human data was ud to reconstruct 3D cartilage tissue model, 3D scaffold was fabricated with two methods: silica rubber mould were prepared by using SLS RP technique frist, then the scaffold was fabricated by traditional method; after designed reasonable structure, 3D scaffold was constructed by SLS technique.
Conclusion: In the study, we fabricated a nanocomposite porous scaffold, and this kind of scaffold showed outstanding biocompatibility and other biological properties. Tissue engineering scaffold could be constructed exactly, rapidly and conveniently by using RP technique. In conclusion, nano-HA/PDLLA porous scaffold and RP technique have a promising application in cartilage tissue engineering.
Keywords: Cartilage Tissue Engineering Composite scaffold, Biocompatibility,
3D scaffold construction, RP technique
獨創(chuàng)性聲明
本人聲明所呈交的學(xué)位論文是我個人在導(dǎo)師指導(dǎo)下進行的研究工作及取得的研究成果。盡我所知,除文中已經(jīng)標明引用的內(nèi)容外,本論文不包含任何其他個人或集體已經(jīng)發(fā)表或撰寫過的研究成果。對本
文的研究做出貢獻的個人和集體,均已在文中以明確方式標明。本人完全意識到,本聲明的法律結(jié)果由本人承擔(dān)。
學(xué)位論文作者簽名:
日期:年月日
學(xué)位論文版權(quán)使用授權(quán)書
本學(xué)位論文作者完全了解學(xué)校有關(guān)保留、使用學(xué)位論文的規(guī)定,即:學(xué)校有權(quán)保留并向國家有關(guān)部門或機構(gòu)送交論文的復(fù)印件和電子版,允許論文被查閱和借閱。本人授權(quán)華中科技大學(xué)可以將本學(xué)位論文的全部或部分內(nèi)容編入有關(guān)數(shù)據(jù)庫進行檢索,可以采用影印、縮印或掃描等復(fù)制手段保存和匯編本學(xué)位論文。
保密□,在_____年解密后適用本授權(quán)書。
本論文屬于
不保密□。
(請在以上方框內(nèi)打“√”)
學(xué)位論文作者簽名:指導(dǎo)教師簽名:
日期:年月日日期:年月日
華中科技大學(xué)碩士學(xué)位論文
1 緒論
1.1 概述
羥基磷灰石(HA)具有良好的生物相容性和骨傳導(dǎo)性,已作為組織工程材料應(yīng)用于細胞種植和骨修復(fù)[1]。然而其脆性使單一HA的臨床應(yīng)用受到限制[2]。同樣,單一的聚DL-乳酸(PDLLA)也難以滿足骨修復(fù)的應(yīng)用要求[3]。羥基磷灰石和聚乳酸的復(fù)合物卻可以充分發(fā)揮兩種材料的優(yōu)勢,用于制備較為理想的組織工程支架材料。納
米羥基磷灰石(nano-HA)的小尺寸和高比表面積,賦予其獨特的生物學(xué)性能。Nano-HA 在尺寸和形態(tài)上更接近自然骨的無機成分[4,5],因而具有更優(yōu)良的蛋白吸附和細胞黏附特性。本文主要研究不同尺度和成分比例的nano-HA / PDLLA復(fù)合多孔支架的制備及其對人軟骨細胞黏附和增殖性能的影響。
1.2 組織工程
組織工程學(xué)(tissue engineering)是一門多學(xué)科交叉的新興學(xué)科,它涉及材料學(xué)、工程學(xué)以及生命科學(xué)等諸多領(lǐng)域。“組織工程”的概念最早是由美國國家科學(xué)基金會于1987年正式確立,定義為:應(yīng)用生命科學(xué)和工程學(xué)的原理與技術(shù),在正確認識哺乳動物正常及病理兩種狀態(tài)下組織結(jié)構(gòu)與功能關(guān)系的基礎(chǔ)上,研究、開發(fā)用于修復(fù)、維護和促進人體各種組織或器官損傷后功能和形態(tài)生物替代物的學(xué)科[6]。
組織工程的核心是建立由細胞和生物材料構(gòu)成的三維空間復(fù)合體。這一三維的空間結(jié)構(gòu)為細胞提供了獲取營養(yǎng)、氣體交換、排泄廢物和生長代謝的場所,也是形成新的具有形態(tài)和功能的組織、器官的物質(zhì)基礎(chǔ)。這與傳統(tǒng)的二維結(jié)構(gòu)(如細胞培養(yǎng)) 有著本質(zhì)的區(qū)別。其最大的優(yōu)點在于: ①形成具有生命力的活體組織,對病損組織進行形態(tài)、結(jié)構(gòu)和功能的重建并達到永久性替代;②可取最少量的組織細胞(甚至可用組織穿刺的方法獲得);經(jīng)體外培養(yǎng)擴增后,來修復(fù)大塊的組織缺損,達到無損傷修復(fù)創(chuàng)