2023年12月31日發(fā)(作者:教育心得)

湖北省鄂東南省級(jí)示范高中教育教學(xué)改革聯(lián)盟學(xué)校2020屆高三上學(xué)期期中考試數(shù)學(xué)試題(文)
一、選擇題:在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
1.已知復(fù)數(shù)z滿足5
21?2i?1?i,則z?( )
zB.
A.
32
2C.
10
2D.
3
【答案】C
【解析】因?yàn)??2i?1?i,
z所以z?1?2i,
1?i所以|z|?|故選:C
1?2i|1?2i|1?4510.
|????1?i|1?i|21?122.若函數(shù)f?x??11?x與g?x??ln?x?1?的定義域分別為M和N,則MB.
x?1?x?1
D.
x?1?x?1
N?(
)
A.
x?1?x?1
C.
x?1?x?1
【答案】A
【解析】函數(shù)f(x)?????????1的定義域M??x|x?1?
1?x函數(shù)g(x)?ln(1?x)的定義域N??x|x??1?
故MN??x|?1?x?1?
故選:A.
?1?3.已知a???,b?log10.2,c?ab,則a、b、c的大小關(guān)系為(
)
3?3?0.2A.
a?b?c
C.
a?c?b
【答案】B
B.
c?a?b
D.
b?c?a
?1?0.2【解析】由題意可知:a???3????0,1?,b?log10.2?log131?133,
0.2b因?yàn)閏?ab???1??3??,a??0,1?,b?1,
所以c?a,
即c?a?b,
故選:B.
4.已知等差數(shù)列?an?的前3項(xiàng)和為30,后3項(xiàng)和為90,且前n項(xiàng)和為200,則n?(
A. 9 B. 10 C. 11 D. 12【答案】B
【解析】依題意,a1?a2?a3?30,an?2?an?1?an?90,
所以a1?a2?a3?an?2?an?1?an?3(a1?an)?120,
所以a1?an?40,
所以Sa1?ann?200?2?n?20n,解得n?10.
故選:B.
5.函數(shù)f?x??ln1?x1?x的大致圖像為(
)
A. B.
C. D.
【答案】D
)
【解析】函數(shù)f?x??ln排除B和C;
1?x11的定義域?yàn)閧x|x??1},當(dāng)x?時(shí),f()??ln3?0,
1?x22當(dāng)x??2時(shí),f(?2)?ln3?0,排除A.
故選:D.
1?2a,0?a?n?4?n26.設(shè)數(shù)列?an?前n項(xiàng)和為Sn,已知a1?,an?1??,則S2020?(
)
15?2a?1,?a?1nn??2A. 1009
【答案】C
【解析】由已知得:a1?B.
5048
5C. 1010 D.
5054
543124,a2?,a3?,a4?,a5?.......T?4,
55555S2020?505?(a1?a2?a3?a4)?505?2?1010.
故選:C.
7.已知???0,??,且sin??A.
???3?,則tan?????(
)
4?5?C.
?1
7B. 7
1或-7
7D.
1或7
7【答案】D
234???3??【解析】已知???0,??,且sin??,當(dāng)???0,?,∴cosα=1????=,
55?2??5??3?1??sin?3?4?4?7;
?,∴tan?????則tan???34?1?tan?tancos?4?1??144tan??tan2sin?34???3????,
當(dāng)???,??,∴cosα=?1????=?,則tan??5cos?4?2??5??3??11???4?4?;
∴tan??????34?1?tan?tan?1??1744tan??tan
綜上:tan???故選:D
????1??或7
4?78.若非零向量a、b滿足a?b且2a?b?b,則a與b的夾角為(
)
A.
??π
6B.
π
3C.
2π
3D.
5π
6【答案】C
【解析】設(shè)a與b的夾角為?,
2由已知得:2a?b?b,2a?bb?0,則2a?b?b?0,
????12?a?b,?2cos??1?0,cos???,解得??.
32故選:C.
9.古希臘數(shù)學(xué)家阿基米德的墓碑上刻著一個(gè)圓柱,圓柱內(nèi)有一個(gè)內(nèi)切球,這個(gè)球的直徑恰好與圓柱的高相等,相傳這個(gè)圖形是阿基米德最引以為自豪的發(fā)現(xiàn).現(xiàn)有一底面半徑與高的比值為1:2的圓柱,則該圓柱的體積與其內(nèi)切球的體積之比為(
)
A.
4
3B.
3
2C. 2 D.
8
3【答案】B
【解析】設(shè)球的半徑為R,
則圓柱的底面半徑為R,高為2R,
4?V圓柱??R2?2R?2?R3,V球??R3.
3?V球V圓柱2?R33??432.
?R3故選:B.
10.已知O、A、B為平面內(nèi)三點(diǎn),滿足OA?OB?5,點(diǎn)C在直線AB上,且OCmin?3,
則tOA?OB?t?R?的最小值為(
)
A.
24
5B. 4 C.
16
5D.
12
5【答案】A
【解析】因?yàn)镺A?OB?5,所以O(shè)AB為等腰三角形,
當(dāng)OC?AB時(shí),OC取得最小值3,
此時(shí),cos?AOC?22372,cos?AOB?cos2?AOC?2cos?AOC?1??,
5252tOA?OB?t2OA?2tOA?OB?OB?25t2?2t?25?(?27576時(shí),tOA?OB取得最小值,
252524.
所以tOA?OB的最小值為57)?25?25t2?14t?25,
25當(dāng)t?故選:A.
c,11.已知?ABC的內(nèi)角A、B、b、且cosB?3sinB?C的對(duì)邊分別為a、點(diǎn)D是?ABC的重心,AD?3,則?ABC的外接圓半徑為(
)
A.
b?cb?3,,a3 B. 3 C.
33
2D.
6
【答案】A
【解析】由已知得:cosB?3sinB?b?c,
a利用正弦定理可得sinA(cosB?3sinB)?sinB?sinC,
3sinAsinBsinBcosAsinB,又sinB?0,所以3sinA?cosA?1,
??1??sin?A???,A?,
6?23?點(diǎn)D是?ABC的重心,
?AD?22211AB?AC?AD?AB?AC?2AB?AC?3,
39?2???化簡得AB?3AB?18?0,解得AB?3,
所以ABC是等邊三角形,則?ABC的外接圓半徑為2R?3?23,R=3.
32故選:A.
12.已知函數(shù)y?12?1?x的圖象在點(diǎn)?x0,x02?處的切線為直線l,若直線l與函數(shù)y?lnx,2??2x??0,1?的圖象相切,則x0必滿足條件(
)
A.
0?x0?1
C.
B.
1?x0?2
D.
2?x0?3
3?x0?2
【答案】D
【解析】函數(shù)y?12?1?x的圖像在點(diǎn)?x0,x02?處的切線的斜率k?x0,
2??2x02x02所以切線方程:y?x0?x?x0??即y?x0x?;
22y?lnx,x??0,1?設(shè)切點(diǎn)為?m,lnm?,切線的斜率k?所以切線方程:y?lnm?1;
m11?x?m?,即y?x?lnm?1,m??0,1?
mm若直線l與函數(shù)y?lnx,x??0,1?的圖像相切,
1?x?0??mx02則方程組?有解,所以?lnx0?1?0有解,
22??x0?lnm?1??2x2構(gòu)造函數(shù)f(x)??lnx?1,?x?1?,
2x2顯然f(x)??lnx?12且f(3)?所以x0?故選:D.
?1,???上單調(diào)遞增,
3?ln3?1?0;f(2)?2?ln2?1?0;
23,2.
??
二、填空題:
13.曲線y??x?2?ex?0在點(diǎn)?0,?2?處的切線方程為________.
【答案】x?y?2?0
【解析】y??x?2?e,y??(x?1)ex,
x令x=0,y???1,切線斜率為-1,
所以曲線在點(diǎn)?0,?2?處的切線方程為x?y?2?0.
故答案為:x?y?2?0
14.若函數(shù)f?x??mx2?lnx?x在定義域內(nèi)有遞減區(qū)間,則實(shí)數(shù)m的取值范圍是________.
【答案】m?1
81,(x?0)
x【解析】根據(jù)題意,函數(shù)f(x)?mx2?lnx?x,其導(dǎo)數(shù)f?(x)?2mx?1?若函數(shù)f(x)?mx2?lnx?x在定義域內(nèi)存在單調(diào)遞減區(qū)間,
則f?(x)?2mx?1?若f?(x)?2mx?1?1?0在(0,??)上有解;
x11111111?0,變形可得m?(?2)??(?)2?,
x2xx2x2811121則m??(?)?在(0,??)上能成立,
2x28設(shè)t?,則t?0,則?(?)???(t?)?,
2x282288x則必有m?1,
81;
8故m的取值范圍為m?故答案為:m?1.
8?π?15.已知函數(shù)f?x??sin?2x???,其中?為實(shí)數(shù),若f?x?≤f??對(duì)?x?R恒成立,且?3?
?π?f???f???,則f?x?的單調(diào)遞增區(qū)間是________.
?2?【答案】????2???k?,??k??(k?Z)
6?3?????2???π??????1,
【解析】由f?x?≤f??對(duì)?x?R恒成立可得,f???sin??3??3??3?則2???????k?,即????k?(k?Z),
6325??π????又f???f???,即sin(?k?)?sin???k??,
6?6??2?5??2k??(k??Z),
65?)
所以f?x??sin?2x???=sin(2x?6?5????2k?(k?Z),
令??2k??2x?2622???k??x???k?(k?Z),
解得?36易得k為奇數(shù),則??所以5?????2???k?,??k??(k?Z).
f?x??sin?2x??的單增區(qū)間是??66??3????2???k?,??k??(k?Z).
6?3?故答案為:??16.若m、n表示直線,?、?、?表示不同平面,下列四個(gè)命題:
①???m,n??,m?n,則???;
②m??,n??,m?n,則???;
③?④???m,???n,mn,則?∥?;
??m,n與?、?所成的角相等,則m?n.
其中真命題的有________.(請(qǐng)?zhí)钊刖幪?hào))
【答案】②
【解析】①若???m,n??,m?n,如圖,則?與?不一定垂直,①錯(cuò)誤;
②若m??,n??,m?n,則???,②正確;
③三棱柱的三個(gè)側(cè)面分別記為?、?、?,?交,③錯(cuò)誤;
④當(dāng)直線m與n平行時(shí),直線m與兩平面?、?所成的角也相等均為0,④錯(cuò)誤.
【點(diǎn)睛】本題考查空間中線面、線線關(guān)系和面面關(guān)系,要證明一個(gè)結(jié)論是錯(cuò)誤的只需舉出反例即可,屬于基礎(chǔ)題.
三、解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟,每個(gè)試題考生都必須作答.
17.設(shè)命題p:不等式x?5?x?1?a2?5a對(duì)?x?R恒成立;命題q:方程ax2?6x?a?8?0有兩個(gè)不同的正根.當(dāng)命題p和命題q不都為假命題時(shí),求實(shí)數(shù)a的取值??m,???n,mn,但?與?相范圍.
解:∵x?5?x?1?6,∴a2?5a?6?0,解得?1?a?6;
∵方程ax2?6x?a?8?0有兩不同正根,∴a?0,利用判別式和韋達(dá)定理可得:
??36?4a?a?8??0?6?解得8?a?9,
?x1?x2??0a??a?8x?x??012?a?∵p?q為真,∴a???1,6???8,9?.
18.已知正項(xiàng)等差數(shù)列{an}滿足a2?a5?9,a3a4?20,等比數(shù)列{bn}的前n項(xiàng)和Sn滿足Sn?2n?c,其中c是常數(shù).
(1)求c以及數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn?anbn,求數(shù)列{cn}解:(1)前n項(xiàng)和Tn.
數(shù)列{an}為正項(xiàng)等差數(shù)列,?公差d?0,
a2?a5?a3?a4?9,又a3a4?20,
?a3?4,a4?5,可得d?1,即可得an?n?1;
Sn?2n?c?①
當(dāng)n?1時(shí),b1?2?c,
當(dāng)n?2時(shí),Sn?1?2n?1?c?②
①?②即可得bn?2n?1,n?2,又{bn}為等比數(shù)列,
?b1?20?1?2?c,即可得c?1,?bn?2n?1,n?N*;
(2)由題意得cn?(n?1)2n?1,
Tn?220?321???(n?1)2n?1,?③
2Tn?221???n2n?1?(n?1)2n,?④
③?④可得:?Tn?2?2?2???212n?12(1?2n?1)?(n?1)2?2??(n?1)2n??n2n.
1?2n?Tn?n2n.
19.在三角形ABC中,a、b、c分別為角A、B、C的對(duì)邊,且sinB(1)求角B的大小;
(2)若b?3,求ABC面積的最大值.
?3cosB?sinB??3.
23312sin2B?cos2B?1,
解:(1)由題意得3sinBcosB?sinB?,化簡得222??????∴sin?2B???1,即可得2B??,∴B?;
6??623a2?c2?31?
(2)∵b?3,B?,由余弦定理得cosB?2ac23即可得a2?c2?3?ac?2ac?ac?3
,∴S△ABC?當(dāng)a?c?3時(shí)等號(hào)成立.
20.如圖,已知四棱錐P?ABCD底面為菱形,且?ABC?11333
acsinB??3??2224?π,E是DP中點(diǎn).
3
(1)證明:PB平面ACE;
(2)若AP?PB?2,AB?PC?2,求三棱錐C?PAE的體積.
(1)證明:連接BD交AC于F,連接EF
∵四邊形ABCD為菱形,∴F為AC中點(diǎn),那么EF∥PB
又∵EF?平面ACE,PB?平面ACE∴PB∥平面ACE;
(2)解:由勾股定理易知AP⊥BP且△ABC為正三角形,
1∵E為DP中點(diǎn),∴VC?PAE?VP?ACD,
2取AB中點(diǎn)M,連接PM、CM,由幾何性質(zhì)可知PM=1,CM?3,
又∵PC=2,∴PC2=PM2+MC2,即PM⊥MC,∵PM⊥AB,
∴PM⊥平面ABCD,
11313∴VP?ACD??1??2?3?,∴VC?PAE?VP?ACD?.
3232621.為慶祝建國70周年,某高中準(zhǔn)備設(shè)計(jì)一副宣傳畫,要求畫面面積為4840cm2,畫面高與寬的比為a?a?1?,畫的上下部分各留出5cm的空白,左右部分各留出8cm的空白.
(1)當(dāng)a?2時(shí),該宣傳畫的高和寬分別為多少?
5
(2)如何確定畫面的高與寬,使得宣傳畫所用紙張面積最小,并求出此時(shí)a的值.
解:(1)設(shè)畫面的高為2x cm,寬5x cm,由題意得10x2?4840,解得x?22,
∴該畫的高為:44?10?54 cm,
寬為:110?16?126 cm;
(2)設(shè)畫面的高為x cm,則寬為?4840?4840?16?
cm,根據(jù)題意得S??x?10??x?x??5000?16x?4840048400?5000?216x??6760
xx當(dāng)且僅當(dāng)16x?∴a?555?.
88848404840?88,
即x?55時(shí)等號(hào)成立,此時(shí)寬為xx22.設(shè)函數(shù)f(x)?ax?sinx,x?(0,(1)若函數(shù)f?x?在?0,?2),a為常數(shù)
?????上是單調(diào)函數(shù),求a的取值范圍;
2?(2)當(dāng)a?1時(shí),證明f(x)?13x.
6解:(1)由f?x??ax?sinx得導(dǎo)函數(shù)f??x??a?cosx,其中0?cosx?1.
當(dāng)a?1時(shí),f??x??0恒成立,
故f?x??ax?sinx在?0,?????上是單調(diào)遞增函數(shù),符合題意;
2?當(dāng)a?0時(shí),f??x??0恒成立,
故f?x??ax?sinx在?0,?????上是單調(diào)遞減函數(shù),符合題意;
2?當(dāng)0?a?1時(shí),由f??x??a?cosx?0得cosx?a,
則存在x0??0,?????,使得cosx0?a.
2?當(dāng)0?x?x0時(shí),f??x0??0,當(dāng)x0?x??2時(shí),
???f??x0??0,所以f?x?在?0,x0?上單調(diào)遞減,在?x0,?上單調(diào)遞增,
2??故f?x?在?0,?????上是不是單調(diào)函數(shù),不符合題意.
2?綜上,a的取值范圍是??,0???1,??.
(2)由(1)知當(dāng)a?1時(shí),f?x??x?sinx?f?0??0,
??x?x?即sinx?x,故sin2???.
2?2?令g?x??f?x??2131???x?ax?sinx?x3,x??0,?,
66?2?21x1?x?1則g??x??a?cosx?x2?a?1?2sin2?x2?a?1?2???x2?a?1,
222?2?2當(dāng)a?1時(shí),g??x??a?1?0,所以g?x?在?0,從而g?x??g?0??0,即f?x??
?????上是單調(diào)遞減函數(shù),
2?13x.
6
本文發(fā)布于:2023-12-31 00:10:34,感謝您對(duì)本站的認(rèn)可!
本文鏈接:http://www.newhan.cn/zhishi/a/1703952634256835.html
版權(quán)聲明:本站內(nèi)容均來自互聯(lián)網(wǎng),僅供演示用,請(qǐng)勿用于商業(yè)和其他非法用途。如果侵犯了您的權(quán)益請(qǐng)與我們聯(lián)系,我們將在24小時(shí)內(nèi)刪除。
本文word下載地址:【數(shù)學(xué)】湖北省鄂東南省級(jí)示范高中教育教學(xué)改革聯(lián)盟學(xué)校2020屆高三上學(xué).doc
本文 PDF 下載地址:【數(shù)學(xué)】湖北省鄂東南省級(jí)示范高中教育教學(xué)改革聯(lián)盟學(xué)校2020屆高三上學(xué).pdf
| 留言與評(píng)論(共有 0 條評(píng)論) |