《鋼結構基本原理》課程實驗報告
薄壁矩形管受壓構件局部穩定實驗報告試驗名稱薄壁矩形管受壓柱的局部穩定試驗
試驗課教師周鋒
姓名汪凡
學號*******
聯系方式********************
理論課教師吳明兒
日期2014年11月4日
鋼結構基本原理實驗報告
——薄壁矩形管受壓構件局部穩定實驗
姓名:汪凡學號:1251051
一、實驗目的
1.通過試驗掌握鋼構件的試驗方法,包括試件設計、加載裝置設計、測點布置、試驗結果整理等方法。
2.通過試驗觀察薄壁構件的局部失穩現象。
4.通過試驗觀察薄壁構件板組約束現象。
5.將理論承載力和實測承載力進行對比,驗證薄壁構件局部屈曲臨界壓力和屈曲后承載力的計算公式。
二、實驗原理
2.1軸心受壓實腹式構件局部失穩臨界力的準則
軸心受壓實腹式構件局部失穩臨界力的準則有兩種:一種是不允許出現局部失穩,板件受到的臨界應力σ應小于局部失穩的臨界應力σcr,σ≤σcr;另一種是允許出現局部失穩,并利用板件屈曲后的強度,要求板件受到的軸力N應小于板件發揮屈曲后強度的極限承載力Nu,N≤Nu。
2.2四邊簡支矩形板的彈性屈曲機理
圖 1 所示為一兩端受均布壓力N x= tσx的彈性簡支矩形薄板,t 為板的厚度。當壓力N x 逐漸增加到屈曲臨界力時,平板就開始屈曲,屈曲撓度用w 表示。
圖1 矩形薄板的屈曲
根據彈性理論,板在縱向均布壓力作用下,板中面的屈曲平衡微分方程為
4444
42242(2)0x w w w w
D N x x y y x
????+++=???? ——① 式中 D ——板的單位寬度的抗彎剛度,
——②
υ ——鋼材的泊松比。
對于簡支矩形板,方程①的解w 可用下列雙重三角級數表示:
——③
上式滿足四個簡支邊上撓度和彎矩均為零的邊界條件,式中m 為x 方向的半波數,n 為y 方向的半波數,a 和b 分別為板的長度和寬度。
將②代入①式,可得Nx 的臨界值Nxcr ,
——④
當n=1時,臨界力Nxcr 最小。物理意義是:當板屈曲時,沿y 軸方向只有一個半波。因此臨界力為
——⑤
式中,k 為板的穩定系數,對于均勻受壓的簡支矩形板,
取x 方向半波數m=1,2,3,4等,可得到圖2所示k 與a/b 的關系曲線。其物理意義是:當板屈曲時,沿y 軸方向總是有k 為最小值的半波數。如當a/ b ≤ √2時,板屈曲成一個半波;當√2< a /b < √6時,板屈曲成二個半波;當√6 < a /b < √12時,板屈曲成三個半波,等等。
圖2縱向均勻受壓簡支矩形板的穩定系數k
?> 1時,k 值沒有多大變化,差從圖2中還可以看出,最小的穩定系數k = 4,在a b
不多都等于4。因此,對于縱向均勻受壓的簡支矩形板可取k = 4。
將②代入⑤式得臨界應力表達式
——⑥
2.2板組約束對彈性屈曲荷載的影響
截面由多塊板件組成,故應考慮板組間的約束因素。即k值應包括板組間的約束系數ζ對箱形截面,有
2.3矩形四邊簡支班屈曲后的性能
由于板屈曲后板面內有橫向的薄膜張力,其對板的進一步彎曲起約束作用,使板件能夠繼續承受更大的壓力。
圖3 板屈曲后,板面內應力分布規律
板屈曲后強度的計算可以采用有效寬厚比計算。有效寬度的計算采用經驗公式
)122.01(1e
e e λλ-=b b 其中e b ——板間的有效寬度;
b ——板件的實際寬度;
cr
e e σσλ=
e σ——板件采用有效寬度時的應力;
kE
t
b e
e )
(05.1σλ=
K ——板件失穩時的穩定系數。
三、
試件設計
x
x
y
σ
σ
σσ
y
+
+-
-
-
-