
清潔驗證可接受限度(中英文版)(PDA TR 49內容節選3)
4.0 Acceptance Limits Cleaning
validation is performed to demonstrate the effectiveness and consistency of a cleaningprocedure. The rationale for lecting limits for product residues, cleaning agents and microbialcontamination, as well as any other process components, should be logically bad on the materials thatimpact the manufacturing process and the safety and purity of the product. The acceptable limits forcleaning manufacturing systems and components should be “practical, achievable and verifiable.” (8)Limits for cleaning validation generally contain some measure related to the active protein (or othermajor component of interest), some measure related to the cleaning agent, some measure related tobioburden levels, some measure related to endotoxin levels, and a requirement that the equipment bevisually clean. In addition, if there are any specific toxicity concerns related to the active protein or otherprocess components (for example, cytotoxicity, allergenicity, or reproductive hazards), the manufacturer’stoxicology or pharmacology groups may determine if a modification of li
mits is required, or whether theu of dedicated equipment is needed.In the discussion that follows, issues for limits are considered bad on the nature of the residue and onthe stage of manufacturing (e.g., bulk active vs. formulation/fill). Manufacturing stages include bulk activemanufacturing (all steps resulting in the bulk active drug substance) and formulation/ fill (formulation ofthe bulk active into a finished drug product and primary packaging of that drug product). Bulkmanufacturing is further divided into upstream process steps (all process steps through harvesting) anddownstream process steps (purification and following steps).
4.0 可接受限度
清潔驗證的目的是為了證明清潔程序的高效性與一致性。選擇產品殘留、清潔劑、微生物污染,以及其他任何工藝成分的限度,邏輯上應該基于物料對生產流程和產品的安全性和純度的影響而定。清潔生產系統和成分的可接受限度應該“切合實際、可達到、可證實”。清潔驗證的限度一般包含與活性蛋白 (或者其他的主要物質成分) 相關分析、 與清潔劑相關的分析、與生物負載水平相關的分析、與內毒素水平相關的分析,以及設備目檢清潔
要求。另外,如果存在任何與活性蛋白或者其他工藝組分相關的特別毒性物質(例如細胞毒性、變應原性、或者生殖危害物) ,那么生產商的毒理學或生理學團隊就需要確定是否有必要改變限度,或者是否需要使用專用的設備。在接下來的討論中,限度的考慮應該基于自然殘留和生產的各個階段(例如,原液 vs.配制/分裝) 。生產階段包括主要原液生產(所有的步驟是為了獲取活性藥物)和配制/分裝(將原液加入到成品的制劑以及藥品物質的初級包裝) 。原液的生產進一步分為上游生產步驟(收獲藥物前的所有步驟)和下游生產步驟(藥物純化以及后續步驟) 。
4.1 key Issues in limits for activesBiotechnology cleaning process often involve a change of the active molecule itlf, which is commonlya protein. Proteins typically are degraded to some extent by the cleaning process commonly ud inbiotechnology manufacturing. The most important mechanism for degradation is summarized below.In alkaline solutions, such as hot, aqueous solutions containing sodium or potassium hydroxide, proteinsmay hydrolyze to soluble oligomers or free amino acids. Ester groups on actives may be hydrolyzed to analcohol and a fatty acid. A common example of this is saponification of fats and oils to glycerol and fattyacid anions.Sodium hypochlorite is som
etimes ud inbiotechnology cleaning.Asacleaningagent,itisparticularly effectivein removing denatured protein residues from surfaces. It is a reactive oxidizer which will degrade proteinsin a more random manner to smaller fragments. A general concern with sodium hypochlorite u is its49 ? Inc. 25xpossible deleterious effect on stainless steel components. Therefore, it is critical that the rin cyclefollowing the u of sodium hypochlorite is adequate enough to remove any residual chloride ion beforeadding the subquent acid wash.Proteins will hydrolyze at a high pH. The parameters of time and temperature have a significant influenceon protein hydrolysis. Therefore, the higher the temperature and pH, the more extensive proteinhydrolysis will occur. Becau the protein is typically degraded into smaller fragments and thofragments tend to be more polar, they are likely to be more water soluble and more readily removed fromequipment surfaces during the washing and rinsing process. A cond effect after protein exposure tohigh pH solutions is a possible irreversible, significant decrea of biological activity due to hydrolysis.
4.1 活性物限度的關鍵問題生物技術的清潔過程經常涉及到活性分子本身的改變,因為這
些活性物質通常是蛋白質。在生物制品制造通常應用的清潔過程中,蛋白質都會在一定程度上發生降解。下面就總結一下最主要的降解機制。在堿性溶液中,尤其是高溫,溶液中含有氫氧化鈉和氫氧化鉀,蛋白質就會水解成可溶的寡聚物或者自由氨基酸。活性物質上的酯旨基團會水解為一個醇和一個脂肪酸,一個最為普遍的例子就是將脂肪和油脂轉化為甘油和脂肪酸的皂化反應。次氯酸鈉有時會用于生物技術清潔, 作為一種清潔劑, 它能非常有效地從表面去除變性蛋白質殘留。
它是一種活潑的氧化劑,它能夠使蛋白質更隨機地降解為更小的片段。使用次氯酸鈉時通常關注其對不銹鋼成分的危害作用。因此, 關鍵的是, 使用次氯酸鈉后的漂洗循環能將氯離子殘留沖洗干凈,然后再進行酸清潔。在高 pH 下蛋白會水解,控制時間和溫度參數都會在很大程度上影響蛋白質的水解。因此,pH和溫度越高, 蛋白就越容易發生水解。因為蛋白通常降解為更為小的片段, 這些小片段趨向于高度極化,他們更加易于溶于水,也更加容易通過清潔、漂洗的過程從設備表面去除。蛋白質暴露于高 pH 的第二個效果就是,水解導致其生物學活性的下降可能是一個不可逆的、顯著的過程。
Degradation of the active can be demonstrated in a laboratory study by exposing the acti
ve to thecleaning solution under simulated cleaning conditions (or less stringent conditions) and performinganalytical and/or biochemical tests on the resultant mixture.For the reasons, in most cas biotechnology manufacturers do not directly t limits for and directlymeasure the active in cleaning validation. Becau of the degradation of the active, no active proteinshould remain after completion of the cleaning process. It is for that reason that analytical methods likeTOC (e Section 6.0) are ud for the detection of protein residues (or their fragments). If a nonspecificmethod like TOC is ud for the correlation to residues of the active, it should be noted that the “real”value of protein residues after cleaning may be significantly lower, as TOC measures all sources of organiccarbon (and not just residues from the active protein).
活性物的降解可以在實驗室中驗證,通過將活性物質暴露在模擬清潔條件(或者強度更低的條件)的清潔溶液中,然后對生成的混合物進行分析和/或者生物化學的測試。基于這些原因,在大多數情況下生物技術制造商在清潔驗證流程中并不直接設置活性限度,或者直接檢測活性。由于活性物質的降解,在清潔過程完成后,應該不會有活性物質的殘留。正是出于這個原因,人們用像 TOC{總有機碳(Total organic carbon)}的分析方法(見第
6.0 節)檢測蛋白質的殘留物(或片段)。如像 TOC 的非特異性的方法被用于活性物質殘留的檢測等相關使用, 應該指出,清潔后真正的蛋白質殘留是非常低的,因為 TOC 檢測的是所有的有機碳源(并不僅僅是來源于活性蛋白的殘余) 。
4.1.1 establishing limits for actives in Formulation and Final FillIn biotechnology formulation/fill manufacturing, limits for protein actives are typically t using acarryover calculation (often called MAC, or Maximum Allowable Carryover) in the same way as for smallmolecule cleaning validation. Though the product is degraded (as discusd above), the calculations arebad on active product. This is assumed to reprent a worst-ca approach if the cleaning method udin formulation/fill results in degradation of the protein active to fragments. Such calculations may berevid bad on degradation considerations.This method only applies when the therapeutic daily do is known. For products dod chronically, atypical calculation allows no more than 1/1000 of the minimum daily therapeutic do of an active in themaximum daily do of the subquent manufactured product; the factor of 1/1000 may be modifieddepending on the specifics of the situation. In addition, if that calculation allows more than 10 ppm of theactive protein i
n the subquent drug product, a limit of 10 ppm active protein in the next drug productmay be utilized. Similar criteria are included as examples in the both the U.S. FDA(8) and PIC/S guidance documents. (9)Limits per surface area can then be calculated bad on the minimum batch size of the next drug productand the shared surface area. Limits in swab and/or rin samples can then be calculated using thesampling parameters.When this method is ud for tting limits, the limit for the active is calculated. It can then be convertedto appropriate units for the analytical procedure to be utilized. For example, if the analytical procedure isTOC, the limit calculated for the active is converted to TOC bad on the TOC content (percentage) of theactive.
An example carryover calculation for formulation/fill is given as Example 1 in Section 15.0 of theAppendix.It should be noted that limits bad on carryover calculations are one example of a “science-bad”method of tting limits. Some companies choo to t limits bad on more stringent criteria, such asthe WFI TOC specification of 500 ppb TOC. Such an approach is acceptable, but should only be ud if itcan be demonstrated t
hat the WFI TOC specification is more stringent than the TOC result, as determinedby a carryover calculation.
4.1.1 在制劑和最終分裝中建立活性物限度在生物技術產品的制劑和分裝生產中,蛋白質活性限度的設定是用污染(傳遞)量計算(通常稱為 MAC,或最大可允許的傳遞量) ,跟小分子清潔驗證使用同樣的方法。雖然產品降解(如上所述) ,計算是基于活性產品的量。如果在制劑/分裝所用的清潔方法導致了活性蛋白降解為小分子片段, 該方法就代表了最差的情況。考慮到降解作用,這個計算可以進行修正。只有當每日治療劑量是已知的,才能應用這種方法。對于長期使用的產品,一個典型的方法是,在隨后制造最大活性日治療劑量的產品中,允許其攜帶不超過最小活性日治療劑量的 1/1000;1/1000 的因子可能根據特殊情況而修訂。此外,如果計算允許在隨后的藥物產品中活性蛋白殘留量超過 10ppm,可以使用在下一批次的藥物產品中,10 ppm 活性藥物蛋白的限度。類似的標準在包括美國 FDA(8)和 PIC / S 的指導文件中是有例子的。然后單位面積的限度可以基于下一個最小批量的藥物生產所共用的設備面積上計算出來。擦拭或沖洗樣品中的限度可以通過采樣的參數計算出來。當使用這個方法設定限度時,活性物的限制可以計算出來。然后它可以轉換為分析方法適當的單位而被利用。例如,如果分析方法是 TOC,活性物質
的限度可以通過轉換為 TOC,即基于 TOC 在活性物質的含量(百分比)而計算出來。在文章的附錄的第15 個章節中有一個關于制劑/分裝污染量計算的例子。應該指出的是,基于污染量(傳遞量)計算的限度是設置限度的 “科學根據的”方法之一。一些公司選擇基于更嚴厲的標準設定限度,例如用 WFI TOC 值500ppb 作為標準。雖然這種方式是可以接受的,但是只有證明 WFI TOC 標準要比污染量計算的 TOC 結果更加嚴格,才可以使用這種方法。